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Abstract. This is a draft of my talk in the advanced seminar ”Quantum field
theory of low-dimensional systems” at the University of Stuttgart in 2009. Topics
are the theoretical background of anyon physics (including a discussion of statistics
in 2+1 and 3+1 dimensions based on the path integral) and the construction of a field
theory with anyonic quasiparticles, namely the O(3) non-linear sigma model with
Hopf term. I try to give a readable self-contained introduction showing the basic
ideas of anyon physics. The organization of the topics is slightly different from the
talk.
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1 Introduction to anyon physics (conceptional part)

This is an introduction to the basic concepts of anyon physics, based on the book of Lerda [1] and
the book of Khare [2]. Most notions in the following can be thought of as classical; quantum
mechanics is included by using the path integral. To make the explanations more graspable I
speak of (point) particles here. However, the whole theory will be abused for field theories in
the second part of the talk (the difference lies mainly in the choice of the configuration space,
but the interpretation is less obvious for fields).

1.1 Spin in different space dimensions

Spin (and angular momentum in general) in 3+1 dimensions (3 space, 1 time) is well-known to
obey the following commutator relations:

[Si, Sj ] = iεijkSk.

It follows (as is shown in every course on quantum mechanics): The eigenvalues are given by

~S2 |s,m〉 = s(s + 1) |s,m〉 , s ∈ 1
2

N.

Therefor, spin is always integer or half-integer. Furthermore, in 3+1 dimensions, there is the
spin-statistics theorem: Particles with s integer are bosons (symmetric states under permutation
of identical particles), particles with s half-integer are fermions (antisymmetric states).

Now, in 2+1 dimensions, there is only one axis of rotation (instead of 3 in the 3+1 dimensional
case). As a consequence, we have only one operator of angular momentum and no commutator
relations. We conclude:

Result 1.1. In 2+1 dimensions, spin is not restricted to integer and half-integer values.

So, with the spin-statistics theorem in mind, we might suspect that in 2+1 dimensions there
are not only bosons and fermions but also particles with other, peculiar, statistics. Indeed, we
will construct a theory of such particles, called anyons, in the second part of this talk.

1.2 Homotopy groups

To understand anyons, we need to talk about interchange of particles by transport in position
space. Interchange of particles corresponds to closed paths in configuration space (see drawing
below). In the following, we develop the language to classify closed paths according to the
number of particle interchanges they describe (actually, the connection to particle interchanges
will become clear only in section 1.4). However, the framework of homotopy theory is much
more general than that.

In this section, I will give some fundamental definitions from homotopy theory. I recommend
thinking mainly about the relatively intuitive fundamental group (which is also called the first
homotopy group) to understand the definitions. The following text is not to be taken as math-
ematically precise but as a quick intuitive introduction, so it is not formulated in full precision
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(eg. we should pay more attention to properties like path-connectedness).

(Important points being: closed paths as continuous mappings S1 → X , continuous deformation with
one arbitrary point held fixed, equivalence relation to classify the paths, multiplication of paths and group
structure. Discuss the example of π1(S1) = Z (”winding number”). Generalization to higher homotopy
groups without details.)

In the following, Sn denotes the n dimensional sphere Sn = {x ∈ Rn+1 : |x| = 1}. First we
have to define the notion of a homotopy.

Definition 1.2. Let X be a topological space.
A homotopy between two continuous mappings f1, f2 : Sn → X is a continuous mapping
h : Sn × [0, 1] → X with

h(x, 0) = f1(x), h(x, 1) = f2(x) ∀x ∈ Sn.

Define two mappings f1, f2 to be equivalent if there exists a homotopy between them; this is an
equivalence relation ∼.

For the next step, we choose a point s0 ∈ Sn and a point x0 ∈ X , and look only at mappings
with

f(s0) = x0.

We also require all the homotopies to hold this point fixed:

h(s0, t) = x0 ∀t ∈ [0, 1].

Now we can define homotopy groups.

Definition 1.3. Writing C(Sn, X) for the set of all continuous mappings between Sn and X ,
with fixed points s0 and x0, the nth homotopy group is defined as the set of equivalence classes

πn(X) := C(Sn, X)/ ∼ .

The definition of the multiplication in this group is given in appendix 4.2. π1(X) is also called
the fundamental group of X and classifies closed paths/loops in X .

The homotopy group does not depend on the choice of s0 and x0, but it is important to fix
these points in the beginning.

1.3 Path integral in spaces with non-trivial topology

In this section, we want to generalize the path integral for configuration spaces C with non-trivial
topology, that is π1(C) 6= {1}.

Let q ∈ C be a configuration. The propagator of a system with action S is known to be

K(q, t1|q, t2) =
∫
Dq̃ eiS[q̃], q̃ : paths in C from q to q,
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where we only look at propagation from a point q in configuration space to itself (that is propa-
gation on closed paths q̃ like in exchanging two particles).

Let the configuration space be C. Taking q as the fixed base point in C, we can make use of
the fundamental group to write:

K(q, t1|q, t2) =
∑

α∈π1(C)

∫
q̃∈α

Dq̃ eiS[q̃].

Remember that α is a whole class of closed paths which can be deformed into each other. The
generalization of this expression is:

K(q, t1|q, t2) =
∑

α∈π1(C)

χ(α)
∫

q̃∈α
Dq̃ eiS[q̃], χ(α) ∈ C.

Why is that possible? There are several reasons I can give:

• The path integral was derived for one particle in C = R3. In this case π1(C) = {1}, so
the generalized expression reduces to the old expression. So from a mathematical point of
view, it is a perfectly valid generalization. (The relevance for physics will become clear
soon.)

• At the moment, we can take this generalization as given and derive properties. Later on,
we will see how the topological factors arise from the action, so the question reduces to
asking if one uses the correct action.

What general properties of χ(α) can we derive?

• Probability is conserved! This implies

|χ(α)| = 1,

so χ(α) is just a phase.

• We can either propagate a particle on a path q̃1 ∈ α1 and then again on a path q̃2 ∈ α2, or
we concatenate both paths to q̃1 · q̃2 ∈ α1 · α2 and propagate the particle only once. The
resulting state should be the same. This implies

χ(α1)χ(α2) = χ(α1 · α2).

Mathematically speaking:

Result 1.4. The mapping χ : π1(C) → C is a one-dimensional representation of the fundamen-
tal group (one-dimensional here has nothing to do with the dimensionality of spacetime).

Finally, we state two slight reformulations of the preceding results. To do this, we write
χ(α) = eiν(α) and then arrive at

K(q, t1|q, t2) =
∑

α∈π1(C)

eiν(α)

∫
q̃∈α

Dq̃ eiS[q̃] =
∫

all q̃
Dq̃ ei(S[q̃]+ν(α[q̃])), (1)

4



where the phase has been absorbed in a topological action

Stop[q̃] = S[q̃] + ν(α[q̃]). (2)

This formulation will be used in the second part of the talk to construct a field theory with
anyons. (Remark: The ν-term can be seen as an interaction in a theory of ordinary bosons.
However, solving this problem of interacting bosons is very difficult.)

The second reformulation consists in assigning the phase to the states instead of the propa-
gator. Thereby, states become multivalued: Their phase depends on the path by which they are
reached, while the propagator looks like an ordinary propagator now:

Ψα ≈ eiν(α)Ψ

This suggests calling ν(α) the statistics of a particle since we know that fermions aquire a phase
of eiπ by exchanging them through a transport in configuration space. In the following section,
we will see that this definition of statistics contains the ordinary one (usually in 3+1 dimensions,
statistics are defined using permutations).

I hope the reader asks why we do not just take
∫
Dq̃ eiS[q̃] as a phase which we can assign to the state.

Or couldn’t
∫
Dq̃ eiS[q̃] be a topological invariant, maybe neutralizing the topological phase eiν(α)? To

answer this question, we have to make an assumption about S. Clearly, we could define S = −ν or
something like that and thus construct pathologies. But in physical theories we take as S a kinetic term,
maybe with some additional local interactions. An example is the non-linear sigma model action. In such
a realistic case, S[q̃] does not only depend on the homotopy class of q̃ but also on the details of the path. To
give an explicit example: Imagine a system with two particles, one of them fixed at a point q0. Calculate
the propagation of the other particle. It will depend on

∫
Dq̃ eiS[q̃] and on the topological phase. Now,

choose a point q′
0 6= q0 in space and draw a straight line from q′

0 to infinity in one direction (example: for
particles moving in RN this could be q′

0 = 0 and the line {x ∈ RN | x1 > 0, x2 = · · · = xN = 0} – see
the hand drawing). Let this line be impenetrable and calculate the propagation again. A lot of previously
possible paths are now excluded from the path integral, so it can be expected to have a different value
now. The topological phase on the other hand is the same as before because we have not created ”holes”
in space (topologically speaking, our new space is homeomorphic to the old one).

1.4 Statistics and properties of π1(C) in different dimensions

This section aims for showing how in the case of point particles our concept of statistics works
and it should clarify the connection with usual treatments of statistics using permutations.

For this section, let Md
N be the configuration space of N identical point particles in d dimen-

sions. What does this space look like? To make things easier, we take Rd as the configuration
space of one particle. For N particles we use N coordinates; so is Md

N = (Rd)N ? This is
not right! Since the particles are indistinguishable, states differing only in a permutation of the
coordinates are the same: We identify

(x1, . . . xN ) ∼ (xσ(1), . . . xσ(N)), σ ∈ SN .
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(SN is the permutation group permutating N objects). Additionally, let us remove the so-called
diagonal

∆ = {(x1, . . . xN ) ∈ (Rd)N | ∃i, j : xi = xj}.
(This means that we do not allow two particles to occupy the same position. This assumption
can be justified in two ways: First, if we do not remove the diagonal, the theory can only
describe bosons. Second, for anyons and fermions there is an exclusion principle (like the Pauli
principle); for bosons we do not need to take out the diagonal.) So we arrive at the following
conclusion:

Result 1.5. The configuration space of N identical point particles is

Md
N =

(
(Rd)N\∆

)
/SN ,

where /SN means the identification as explained above.

At this point, we remember the path integral: It showed us that statistics can be understood
by classifying the closed paths using the fundamental group π1(Md

N ) and by looking at its one-
dimensional representations. Without proof (which involves some more mathematics) I quote
the following result:

Result 1.6. The fundamental group of the configuration space of N particles in d dimensional
space (spacetime: d+1 dimensions) is

π1(Md
N ) =

{
SN if d ≥ 3
BN if d = 2

.

So in 3+1 dimensions (d=3) we have to study only representations of the permutation group SN .
Its only one-dimensional representations are the symmetric and the antisymmetric representa-
tion [5], corresponding to bosons and fermions.

On the other hand, in 2+1 dimensions we have the more complicated ”braid group” BN

which has more representations, giving anyonic statistics.

We end the section with a few remarks to make this result more graspable: For N = 2, one
can write Md

2 = Rd × rd
2 , where Rd contains the center of mass coordinate, and rd

2 is R2 with
r = 0 taken out and r ∼ −r identified. Only the rd

2 part of the configuration space has non-
trivial topology. For d = 3 one can convince oneself that there are only two sorts of paths. For
d = 2, r2

2 is a cone without the tip, which allows for a lot of non-homotopic paths (winding
once, twice, thrice, . . . around the cone). One should keep this diversity in mind as the essential
difference between 2+1 and 3+1 dimensions.

2 Realization of anyons in a non-linear sigma model
(applications)

In this section, I will show how a representation of the fundamental group π1(C) arises from a
modification of the sigma model Lagrangian. We will find topological excitations as quasiparti-
cles which carry arbitrary spin and obey fractional statistics. This section is based on the article
by F. Wilczek and A. Zee [3].
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2.1 Repetition (short): Solitons in a non-linear sigma model

At this point, a short repetition of solitons in the O(3) non-linear sigma model is given.
The O(3) non-linear sigma model describes a continuous two-dimensional spin field:

n : R2 → S2, x 7→ n(x), n(x) a unit vector in R3.

The configuration space C consists of these field configurations n.
The energy is given by the (classical) Hamiltonian:

E[n] =
∫

d2x
3∑

a=1

(∇na)2,

with ∇na(x) = (∂1n
a(x), ∂2n

a(x)) consisting of the spatial derivatives. Clearly E[n] ≥ 0.
Choose a ground state, e.g. n(x) = (1, 0, 0)T ∀x ∈ R2. This has ∂in

a = 0 and therefore
minimizes the energy. However, the direction of the ground state is arbitrary because a rotation
of (1, 0, 0)T does not change the energy (O(3) symmetry).

Now we take a look at excitations n of the ground state with finite energy: E[n] < ∞. Finite
energy requires some sort of rapid decrease of the ∂in

a(x) as |x| → ∞. To ensure this, we
impose the boundary condition

n(x) → (1, 0, 0)T (|x| → ∞).

This allows us to compactify R2 to S2 by adding the point ”infinity” (one-point compactification)
so that n can be seen as a continuous mapping S2 → S2:

n : R2 ∪ {∞} ∼= S2︸ ︷︷ ︸
compactified position space

→ S2︸︷︷︸
internal space (spin)

x ∈ R2 7→ n(x), ∞ 7→ (1, 0, 0)T

(3)

(The boundary condition is necessary to make n : S2 → S2 continuous in the point ∞.)
Continuous mappings S2 → S2 can be classified in homotopy classes, the elements of π2(S2).
Remember that two field configurations are equivalent by homotopy if they can be continuously
deformed into each other. Mathematicians show that

π2(S2)
φ∼= Z,

where the isomorphism φ is given by the Pontryagin number (topological charge): φ : n 7→ Q[n].
Time evolution is a continuous deformation of the field. Therefor, a field configuration in the
Q = a sector can not evolve into a field configuration with Q 6= a. Excitations with Q 6= 0 are
generally called solitons, excitations with Q = 1 are called skyrmions.

Remark 1: E comes from the Legendre transformation of the Lagrangian in the action

S[n] =
∫

dtd2x
2∑

µ=0

3∑
a=1

(∂µna)2︸ ︷︷ ︸
Lagrangian density

. (4)
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Remark 2: In this repetition we have only dealt with static field configurations. Keep in mind
the idea of compactification which allows us the use of homotopy groups. This idea will be
used in different applications in the following. In the next section we will deal with time depen-
dent field configurations, evolving from ground state to ground state with different intermediate
processes. The time axis is involved then, so π3(S2) will be used.

2.2 Introducing the Hopf term

The configuration space of the sigma model consists of field configurations. A closed path in
configuration space is a family of field configurations, parameterized by time in a continuous
way:

nt : R2 → S2, t ∈ S1 = R ∪ {∞}.

(Here, we have compactified the time axis to S1.) At this point, we have to fix a base point x0

in configuration space. As a configuration consists of a whole field now, choose x0 to be the
ground state nGround(x) = (1, 0, 0)T ∀x ∈ R2. On the time axis S1, choose1 t0 = ∞ = −∞.
Then every closed path t 7→ nt ∈ C can be interpreted as a mapping

n : Rt × R2 → S2, (t, x) 7→ n(t, x) = nt(x).

By the finite energy requirement,

nt(x) → (1, 0, 0)T (|x| → ∞).

Furthermore, by our choice of the base boint

nt → (1, 0, 0)T = nGround (|t| → ∞).

and so n(t, x) → (1, 0, 0)T for | (t, x)︸ ︷︷ ︸
R3

| → ∞. So by compactifying R3 ∪ {∞} = S3, n is a

continuous mapping
n : S3 → S2.

Result 2.1. This shows that every closed path t 7→ nt in C (from vacuum to vacuum) can
be seen as an element of π3(S2). With this identification we have an isomorphism such that
π1(C) ∼= π3(S2) (see handwritten explanation below).

Now we can introduce the Hopf invariant (an explicit construction is given in the appendix).
At the moment, we need only the following facts:

• Let n : S3 → S2 be a vacuum-to-vacuum field evolution. Then H(n) ∈ Z and H(n)
does not change if n is deformed by a homotopy (H is a homotopic invariant). So H only
depends on the class α ∈ π3(S2) to which n belongs.

• Furthermore H : π3(S2) → Z is a homomorphism:

H(α1 · α2) = H(α1) + H(α2) ∀α1, α2 ∈ π3(S2). (5)
1Here∞ = −∞ because for closed paths the time axis R is compactified to S1.
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(Three remarks about that:
The definition of a multiplication in π3(X) is more complicated than in π1(X). I refer the reader
to appendix 4.2 for more details.
The ”multiplication” in Z as a group is just ordinary addition.
Note that H as a mapping π3(S2) → Z is only well-defined because it depends only on the
homotopy class of n.)

2.3 Connection between linking number and Hopf term

Calculating the Hopf number can be quite time-consuming. However, our task is highly simpli-
fied by noting the following theorems.

Result 2.2 (Sard’s Theorem [7]). Let n be a mapping S3 → S2. Then, almost every point in
S2 will have as its inverse image in S3 a collection of nonintersecting closed curves. (”almost
every” in the sense of measure theory)

The proof of this theorem is quite involved, so we leave it to people who can really prove
theorems (mathematicians). Instead, we have a look at how this theorem helps us calculating the
Hopf number. A connection to the very intuitive linking number is given by the next theorem:

Result 2.3. Choose two (arbitrary, but non-critical in the sense of Sard’s theorem) values of a
field configuration: n(ta, xa), n(tb, xb) ∈ S2. Their ”wordlines” in Rt×R2 are two collections
of closed curves: γa and γb.
Then, the following equation holds:

H(n) = Link(γa, γb),

where ”Link” is the linking number of the closed curves (see figure 1).

We do not give a proof and prefer to show the applications of this theorem to physics. Two
interesting examples are the spin and the statistics of skyrmions, to be discussed in the following
sections.

2.4 The topological action

The crucial idea now is: Change the action (4) of our system to be

S′[n] = S[n] + θH[n], (6)

with θ ∈ R an arbitrary parameter! Remember that the sigma model is an effective theory; the
existence of a Hopf term in its action should be decided on a microscopic level and will not be
discussed in this talk. We just assume it is there. Compare (6) with the equations (1) and (2).
It looks like we have found a way to construct the χ(α) = eiν(α)-terms in the path integral,
realized as χ[n] = eiH[n] (for n a representative of the equivalence class α ∈ π1(C) = π3(S2)).
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Link = 0 Link = 1

Link = 2 Link = 3

Figure 1: Examples of curves with different linking numbers. The curves have to be interpreted
as living in R3.

We check that this gives us a representation of π1(C). Let n1, n2 be paths representating
elements of π1(C). As we have seen, they can be identified with elements of π3(S2). So using
result 2.1 we find

χ[n1] · χ[n2] = eiH[n1]eiH[n2] = ei(H[n1]+H[n2]) (5)= eiH[n1·n2] = χ[n1 · n2].

(Ok, I’m tricking you a bit here to make you believe that the Hopf term really describes statistics: As
we are working with a field theory now, there is no ”moving particles around each other” at this stage.
However, a particle interpretation of the soliton excitations will come into the field theory in the next
section to convince you.)

2.5 Spin of a Skyrmion

In the following, we will interpret skyrmions as particles. This is based on the following footing:
by a continuous deformation a skyrmion can be assumed to live in a very small spacetime region
of the field, like a localized nearly-point particle.

At this point, I should explain how creation of skyrmion-antiskyrmion pairs works and why it is a
continuous process. A skyrmion has Q = 1, an antiskyrmion Q = −1, the ground state (vacuum)
Q = 0. Pair creation should result in a state with Q = 0 = 1 + (−1). This is achieved by taking
a skyrmion configuration ns and an antiskyrmion configuration na and create a pair configuration by
multiplying them: npair = ns · na. Here, multiplication means multiplication of elements of π2(S2)
(static field configurations composed by placing them side by side, cf.appendix 4.2). So we end up with
Q(npair) = Q(ns · na) = Q(ns) + Q(na) = 0 as intended, and since Q is an isomorphism it follows
that npair and the vacuum belong to the same homotopy class in π2(S2). Therefore, there is a continuous
deformation between npair and the vacuum, so that pair creation can be realized as a continuous process.
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Skyrmion

Antiskyrmion

Pair creation

Annihilation

x

t

x

Figure 2: A skyrmion-antiskyrmion pair is created, the skyrmion is rotated by 2π and the pair is
annihilated. Shown are the worldlines of two chosen values of the field in the described process.
The linking number is 1.

Finally, we arive at the spin of skyrmions. To make it explicit, consider the following time
evolution of a field:

• Vacuum at t = −∞

• Create a skyrmion-antiskyrmion pair at some time

• Choose two values of the field which lie on the skyrmion excitation (those points will be
used to calculate the linking number)

• Rotate the skyrmion by 2π around itself

• Annihilate the pair

• Vacuum at t = +∞, so we have a closed path in C.

This whole process as a time dependent field configuration is continuous (as explained above).
Call it n ∈ π3(S2). The Hopf number is given by the linking number. What do the worldlines
of the chosen field values look like? It is one loop for each of the two points.

To make this clear, let us first look at the first field value only. By Sard’s Theorem, its inverse image
could be zero, one, two,. . . closed curves in spacetime. It can not be zero curves, because we chose
values lying on the skyrmion at some time.

Now, if it is exactly one closed curve, at some time we have two space points (see figure 2, the black or
the dashed line) where the field takes the chosen value. By our choice of the field values one of the space
points corresponds to the skyrmion. The one on the other side of the closed curve can then be interpreted
as lying on the antiskyrmion.

Now if it were two or more paths, at some time we would have four or more places in space where
the field takes the chosen value. But then, four places with the chosen value are too many for just one
skyrmion and one antiskyrmion (as long as we assume that they are not fancily deformed).

Finally, look also at the second field value. It gives a second closed loop, which by homotopic defor-
mation of the skyrmion lies next to the other worldline.
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The rotation of the skyrmion introduces a twist between the two wordlines. It follows that the
worldlines look like2 in figure 2, which shows that Link = 1. So this closed path in configuration
space has χ[n] = eiθH[n] = eiθ. Without the rotation we would have found χ[n] = 1, and so the
relative phase is eiθ.
Recall the fact that a rotation is also given as ei2πJ for a state of angular momentum J (since
angular momentum generates rotations). The comparison yields:

Result 2.4. The angular momentum of skyrmions with Hopf term +θH is

J =
θ

2π
, θ ∈ R arbitrary.

So it is possible to have J neither integer nor half-integer and we have shown that skyrmions
obtain fractional spin by adding the Hopf term. What is left is to study their statistics.

Remark: Solitons with winding number Q 6= 1 have J = θ
2πQ2. This can be derived using

the canonical formalism. In our derivation, it should come from the internal structure of such
solitons: If a field configuration winds Q 6= 1 times around S2 the worldlines can be expected
to be more complicated, so that they link Q2 times.

2.6 Statistics of Skyrmions

The discussion of the statistics of skyrmions works much like the discussion of their spin. The
idea now is to regard a process in which two skyrmions are interchanged. Explicitly, the process
is:

• Vacuum at t = −∞

• Create two skyrmion-antiskyrmion pairs

• Interchange the two skyrmions

• Annihilate

• Vacuum at t = ∞.

The world lines of two field values are shown in figure 3. (This time two identical skyrmions
exist, so as long as one doesn’t do any interchange, each field value has two loops as its inverse
image – black lines for the first value, dashed lines for the other value.) The figure shows that the
linking number and therefor the Hopf invariant is 1. (Without the interchange, we are in case (a)
of figure 3 with Link = 0.) It follows that the field picks up a phase eiθ in this process because
of the interchange. This can be compared to bosons with a phase ei0 = 1 (like in the non-linear
sigma model without Hopf term) or fermions with eiπ = −1.

2Actually, the worldlines could be already twisted even without the skyrmion being rotated. But then, rotating the
skyrmion would introduce an additional twist, resulting in the same relative phase.
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(a) (b) (c)

Figure 3: (a) Creation and annihilation of two skyrmion-antiskyrmion pairs. (b) Same, but with
interchange of the two skyrmions. (c) The curves in (b) after homotopic deformation.

Result 2.5. The statistical phase of skyrmions (with Hopf term) is eiθ for one interchange, with
an arbitrary parameter θ ∈ R. This means that in general skyrmions are neither bosonic nor
fermionic.

Remark: It is π4(S2) = Z2, so (χ[n])2 = χ[n · n] = χ[e] = 1 (e: neutral element) and
therefor χ[n] = ±1 and thus we have only bosons or fermions in the model with 3+1 spacetime
dimensions.

3 Summary

Let us end with a short overview of the discussed topics.

• Spin in 2+1 dimensions is not restricted to integer and half-integer values.

• Homotopy is introduced. Especially, paths in configuration space are equivalent if they
can be continuously deformed into each other.

• The path integral is generalized for configuration spaces with non-trivial homotopy groups.

• Statistics are described by one-dimensional representations of π1(C), C being the con-
figuration space. 2+1 dimensions allow more kinds of statistics than just bosonic and
fermionic.

• The Hopf term is added to the action of the non-linear sigma model.

• The connection between Hopf term and linking number is explained.

• The Hopf term is shown to yield fractional spin and statistics for the skyrmion.

4 Appendix

4.1 Construction of the Hopf term

If there is still enough time, we can construct the Hopf term explicitly. Define the topological current as

Jµ :=
1
8π

εµνλnaεabc∂νnb∂λnc, µ = 0, 1, 2, a = 1, 2, 3.

This current is always conserved, ∂µJµ = 0, independent of the equations of motion (it is not a Noether
current). The corresponding charge is the winding number/Pontryagin number Q used in classifying the
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static field configurations. As the divergence of Jµ vanishes, there is a vector potential Aµ which has Jµ

as its curl:
Jµ = εµνλ∂νAλ.

Then the Hopf term is defined as

H[n] = − 1
2π

∫
dtd2xAµ[n]Jµ[n].

4.2 Definition of the multiplication in higher homotopy groups

Here I’ll give a short explanation of how one defines the multiplication on πn(X) (in case you are not
comfortable with my previous drawings on the black board). More details can be found in books on
algebraic topology. Paths (n = 1) can easily be multiplicated by concatenation. For n > 1 we have to
clarify some other definitions first before we define the multiplication.

Let (X, x0) be a topological space with a point x0 ∈ X chosen. Let In := [0, 1] × · · · × [0, 1] be
the unit n-cube with boundary ∂In = {(s1, . . . sn) ∈ In|∃i : si = 0 or si = 1}. A closed n-loop is a
continuous map α : In → X with α(∂In) = {x0}. Let In/∂In denote the n-cube with ∂In shrunk to a
point, then we see that In/∂In ∼= Sn. So effectively α : Sn → X and the new definition reproduces the
old one.

The advantage over the old definition is that we can now define the product of two n-loops α and β:

α · β(s1, . . . sn) :=

{
α(2s1, s2, . . . sn) 0 ≤ s1 ≤ 1/2
β(2s1 − 1, s2, . . . sn) 1/2 < s1 ≤ 1

As all boundary points map to x0 this is a well-defined continuous mapping Sn → X . The homotopy
classes of such loops with this multiplication then fulfil the group axioms (without proof). They form the
nth homotopy group. For In = I2 one has an easy picture of the multiplication: Both field configurations
are squeezed along the s1 direction (which as as homeomorphism does not really change anything) and
then glued together side by side.
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