Describing Quantum Correlations in the Fermi Liquid by

Bosonization

Niels Benedikter

Università degli Studi di Milano

Electrons in a Piece of Metal

Hamilton operator of N spinless fermions on the (fixed size) 3D torus:

$$
H_{N}:=\sum_{i=1}^{N}\left(-\hbar^{2} \Delta_{i}\right)+\lambda \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right), \quad V: \mathbb{R}^{3} \rightarrow \mathbb{R} .
$$

Acts on the L^{2}-space of antisymmetric wave functions of $3 N$ variables.
Quantities of interest: spectrum and ground state energy:

$$
E_{N}:=\inf \sigma\left(H_{N}\right)=\inf _{\|\psi\|=1}\left\langle\psi, H_{N} \psi\right\rangle .
$$

Fixing the physical regime of interest: gas with high density \& weak interactions, $\hbar:=N^{-1 / 3}, \lambda:=N^{-1}$, and $N \rightarrow \infty$ (mean-field/semiclassical scaling limit).

Bosonization of Excitations -
 Definition and Project Goals

Preparation: Isolating Excitations

$$
H_{N}=\hbar^{2} \sum_{k \in \mathbb{Z}}|k|^{2} a_{k}^{*} a_{k}+\frac{1}{2 N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k) \sum_{p, q \in \mathbb{Z}^{3}} a_{p+k}^{*} a_{q-k}^{*} a_{q} a_{p}
$$

Particle-hole transformation corresp. to Fermi ball $\mathcal{B}_{F}=\left\{k \in \mathbb{Z}^{3}:|k| \leq\left(\frac{3}{4 \pi}\right)^{1 / 3} N^{1 / 3}\right\}$:

$$
R a_{k}^{*} R^{*}:= \begin{cases}a_{k}^{*} & k \in \mathcal{B}_{F}^{c} \\ a_{k} & k \in \mathcal{B}_{F} .\end{cases}
$$

We get

$$
R^{*} H_{N} R=E_{N}^{\mathrm{HF}}+\underbrace{\hbar^{2} \sum_{p \in \mathcal{B}_{F}^{c}} p^{2} a_{p}^{*} a_{p}-\hbar^{2} \sum_{h \in \mathcal{B}_{F}} h^{2} a_{h}^{*} a_{h}}_{=: H^{\text {kin }}}+\underbrace{Q}_{\begin{array}{c}
\text { quartic in } \\
\text { operators } a^{*}, a
\end{array}}
$$

Goal: a quadratic approximation to the excitation Hamiltonian $H^{\text {kin }}+Q$.
(Quadratic Hamiltonians can be diagonalized by Bogoliubov transformations.)

Bosonization of the Interaction

Observe: if we introduce pair operators

$$
b_{k}^{*}:=\sum_{\substack{p \in \mathcal{B}_{F}^{c} \\
h \in \mathcal{B}_{F}}} \delta_{p-h, k} a_{p}^{*} a_{h}^{*} \quad \begin{array}{ll}
p & \text { "particle" outside the Fermi ball } \\
h & \text { "hole" inside the Fermi ball }
\end{array}
$$

then

$$
Q=\frac{1}{N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k)\left(2 b_{k}^{*} b_{k}+b_{k}^{*} b_{-k}^{*}+b_{-k} b_{k}\right)+\mathcal{O}\left(N^{-1}\right)
$$

The b_{k}^{*} and b_{k} have approximately bosonic commutators:

$$
\left[b_{k}^{*}, b_{l}^{*}\right]=0, \quad\left[b_{l}, b_{k}^{*}\right]=\delta_{k, l} n_{k}^{2}+\mathcal{E}(k, l) .
$$

How to express $H^{\text {kin }}$ through pair operators?

Bosonization of the Kinetic Energy

Fermi ball \mathcal{B}_{F}

[Benfatto-Gallavotti '90]
[Houghton-Marston '93]
[Haldane '94]
[Castro Neto-Fradkin '94]
[Fröhlich-Götschmann-Marchetti '95]

Localize to $M=M(N)$ patches near the Fermi surface:

$$
b_{\alpha, k}^{*}:=\frac{1}{n_{\alpha, k}} \sum_{\substack{p \in \mathcal{B}_{F}^{c} \cap B_{\alpha} \\ h \in \mathcal{B}_{F} \cap B_{\alpha}}} \delta_{p-h, k} a_{p}^{*} a_{h}^{*}
$$

with $n_{\alpha, k}$ chosen to normalize $\left\|b_{\alpha, k}^{*} \Omega\right\|=1$.

Bosonization of the Kinetic Energy

Fermi ball \mathcal{B}_{F}

[Benfatto-Gallavotti '90]
[Houghton-Marston '93] [Haldane '94]
[Castro Neto-Fradkin '94]
[Fröhlich-Götschmann-Marchetti '95]

Localize to $M=M(N)$ patches near the Fermi surface:

$$
b_{\alpha, k}^{*}:=\frac{1}{n_{\alpha, k}} \sum_{\substack{p \in \mathcal{B}_{\mathcal{F}}^{c} \cap B_{\alpha} \\ h \in \mathcal{B}_{F} \cap B_{\alpha}}} \delta_{p-h, k} a_{p}^{*} a_{h}^{*}
$$

with $n_{\alpha, k}$ chosen to normalize $\left\|b_{\alpha, k}^{*} \Omega\right\|=1$.

Linearize around patch center ω_{α} :

$$
\left[H^{\mathrm{kin}}, b_{\alpha, k}^{*}\right] \simeq 2 \hbar\left|k \cdot \hat{\omega}_{\alpha}\right| b_{\alpha, k}^{*}
$$

Same commutator obtained with the replacement

$$
H^{\text {kin }} \sim \sum_{k \in \mathbb{Z}^{3}} \sum_{\alpha=1}^{M} 2 \hbar u_{\alpha}(k)^{2} b_{\alpha, k}^{*} b_{\alpha, k}, \quad u_{\alpha}(k)^{2}:=\left|k \cdot \hat{\omega}_{\alpha}\right| .
$$

Quadratic Effective Hamiltonian

Back to the interaction

$$
Q \simeq \frac{1}{N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k)\left(2 b_{k}^{*} b_{k}+b_{k}^{*} b_{-k}^{*}+b_{-k} b_{k}\right) .
$$

Decompose

$$
b_{k}^{*}=\sum_{\alpha=1}^{M} n_{\alpha, k} b_{\alpha, k}^{*}+\text { lower order }
$$

Quadratic Effective Hamiltonian

Back to the interaction

$$
Q \simeq \frac{1}{N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k)\left(2 b_{k}^{*} b_{k}+b_{k}^{*} b_{-k}^{*}+b_{-k} b_{k}\right) .
$$

Decompose

$$
b_{k}^{*}=\sum_{\alpha=1}^{M} n_{\alpha, k} b_{\alpha, k}^{*}+\text { lower order }
$$

Normalization:

$$
\begin{aligned}
n_{\alpha, k}^{2} & =\# \mathrm{p}-\mathrm{h} \text { pairs in patch } B_{\alpha} \text { with momentum } k \\
& \simeq \frac{4 \pi N^{2 / 3}}{M}\left|k \cdot \hat{\omega}_{\alpha}\right| .
\end{aligned}
$$

Quadratic Effective Hamiltonian

Back to the interaction

$$
Q \simeq \frac{1}{N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k)\left(2 b_{k}^{*} b_{k}+b_{k}^{*} b_{-k}^{*}+b_{-k} b_{k}\right) .
$$

Decompose

$$
b_{k}^{*}=\sum_{\alpha=1}^{M} n_{\alpha, k} b_{\alpha, k}^{*}+\text { lower order }
$$

Normalization:

$$
\begin{aligned}
n_{\alpha, k}^{2} & =\# \mathrm{p}-\mathrm{h} \text { pairs in patch } B_{\alpha} \text { with momentum } k \\
& \simeq \frac{4 \pi N^{2 / 3}}{M}\left|k \cdot \hat{\omega}_{\alpha}\right| .
\end{aligned}
$$

Effective Quadratic Almost-Bosonic Hamiltonian

$H^{\mathrm{eff}}=\hbar \sum_{k \in \mathbb{Z}^{3}}\left[\sum_{\alpha} u_{\alpha}(k)^{2} b_{\alpha, k}^{*} b_{\alpha, k}+\frac{\hat{V}(k)}{M} \sum_{\alpha, \beta}\left(u_{\alpha}(k) u_{\beta}(k) b_{\alpha, k}^{*} b_{\beta, k}+u_{\alpha}(k) u_{\beta}(k) b_{\alpha, k}^{*} b_{\beta,-k}^{*}+\right.\right.$ h.c. $\left.)\right]$

Diagonalization of the Effective Hamiltonian

In the bosonic approximation $\mathcal{E}(k, l)=0$, $H^{\text {eff }}$ can be diagonalized by a bosonic Bogoliubov transformation [B, Rev. Math. Phys. (2020)]:
no interaction

momentum k of particle-hole pair

Coulomb $\hat{V}(k)=1 /|k|^{2}$

Plasmon (collective oscillation) emerges - rest of spectrum only weakly renormalized.
a non-perturbative approach to Fermi liquid theory

State of the Rigorous Project

Ground State Energy

Theorem: [B-Nam-Porta-Schlein-Seiringer, Commun. Math. Phys. (2020) and Invent. Math. (2021), B-Porta-Schlein-Seiringer arXiv:2106.13185]

Let $\hat{V}(k) \geq 0$ and $\sum_{k \in \mathbb{Z}^{3}}(1+|k|) \hat{V}(k)<+\infty$. Then as $N \rightarrow \infty$ we have

$$
E_{N}=E_{N}^{\mathrm{HF}}+E_{N}^{\mathrm{RPA}}+\mathcal{O}\left(\hbar^{1+\varepsilon}\right) \quad\left(\hbar=N^{-1 / 3}\right)
$$

where the random phase approximation energy is

$$
E_{N}^{\mathrm{RPA}}:=\hbar \sum_{k \in \mathbb{Z}^{3}}|k|\left[\int_{0}^{\infty} \log \left(1+\hat{V}(k)\left(1-\lambda \arctan \lambda^{-1}\right)\right) \mathrm{d} \lambda-\frac{1}{4} \hat{V}(k)\right]
$$

- $E_{N}^{\mathrm{RPA}} \simeq \inf \sigma\left(H^{\text {eff }}\right)$, as formally computed by the Bogoliubov diagonalization.
- In physics (1950s): Macke, Bohm-Pines, Gell-Mann-Brueckner, Sawada et al
- Also: Christiansen-Hainzl-Nam arXiv:2106.11161

Our bosonization method has potential far beyond the ground state energy: spectrum, ground state properties, dynamics...

Example: Effective Dynamics

2014 In the sense of reduced density matrices, Hartree-Fock theory is sufficient to approximate the many-body time evolution:

$$
\left\|\gamma_{t}^{(1)}-\gamma_{t}^{\mathrm{HF}}\right\|_{\mathrm{tr}} \leq \frac{\exp \left(c_{1} \exp \left(c_{2}|t|\right)\right)}{N^{5 / 6}}
$$

[B-Porta-Schlein, Commun. Math. Phys. (2014)]
2021 An effective bosonized dynamics provides a much stronger approximation, i. e., in Fock space norm of the many-body wave function.
[B-Nam-Porta-Schlein-Seiringer arXiv:2103.08224]

