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Free Quantum Particle in R3



A single free quantum particle in R3

Time evolution defined by the Cauchy problem of the Schrödinger equation:

i∂tψ(t) = −∆xψ(t) , ψ(0) ∈ L2(R3) .

Explicitly solvable by a Fourier transform from position x to momentum k.

Typical behavior is dispersive:

http://www.astro.utoronto.ca/~mahajan/notebooks/quantum_tunnelling.html
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Particle in External Potential



A single particle in an external potential

Hamilton operator H = H∗ : H2(R3) ⊂ L2(R3)→ L2(R3) defined by

H := −∆x + Vext(x) , Vext : R3 → R

and time evolution given by the Schrödinger equation

i∂tψ(t) = Hψ(t) , ψ(0) ∈ L2(R3) .

There may now be solutions that do not disperse, called bound states and described by
eigenvectors of the Hamilton operator:

Hψ = Eψ with E ∈ R ⇔ ψ(t) = e−iEtψ(0) .

In particular, if
Egs := inf spec(H) = inf

‖ψ‖=1
〈ψ,Hψ〉

is an eigenvalue, it is called the ground state energy.
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Example: hydrogen atom

One electron attracted by the Coulomb potential of a proton, in relative coordinates:

H = −∆x −
1
|x | .

The spectrum is
spec(H) = specess(H) ∪ specpp(H)

where scattering solutions (i. e., with dispersive behavior) correspond to

specess(H) = [0,+∞)

and bound states to
specpp(H) =

{
− 1
4n2 | n ∈ N

}
.
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Non–Interacting N–body System



Non–Interacting N–body System

The Hilbert space of an N–particle system is the tensor product⊗N
i=1 L2(R3) ' L2(R3N). Non–interacting Hamiltonian on this space

H =
N∑

i=1
hi , hi = 1⊗ · · · ⊗ h ⊗ · · · ⊗ 1 , h = −∆x + Vext .

Solutions are trivial: given initial data

ψ(0) =
∞∑

k=1
λk ϕk,1 ⊗ · · · ⊗ ϕk,N

the solution is
ψ(t) =

∞∑
k=1

λk ϕk,1(t)⊗ · · · ⊗ ϕk,N(t)

where each factor of the tensor product solves the one–particle Schrödinger equation

i∂tϕk,i (t) = hϕk,i (t) .
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Interacting N–body system



Interacting N–body system

The Hilbert space is still ⊗N
i=1 L2(R3) ' L2(R3N), but H contains a pair interaction:

H =
N∑

i=1
hi + λ

∑∑
1≤i<j≤N

V (xi − xj) , h = −∆x + Vext .

With N ' 1023 not even numerically tractable.

Quantum statistics: for indistinguishable particles the wave function is symmetric

ψ(x1, . . . , xN) = ψ(xσ(1), . . . , xσ(N)) ∀σ ∈ SN (bosons)

or antisymmetric

ψ(x1, . . . , xN) = sgn(σ)ψ(xσ(1), . . . , xσ(N)) ∀σ ∈ SN (fermions)

Examples: cold atomic gases (bosons & fermions), electrons in a metal (fermions).
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Now what is an effective theory?



Example 1: time–dependent Hartree equation

N bosons in a mean–field regime: N →∞ and coupling constant λ = N−1.

Assume that at t = 0 we start in a Bose–Einstein condensate:

ψ(0) =
N⊗

i=1
ϕ ⇔ ψ(0)(x1, . . . , xN) =

N∏
i=1

ϕ(xi ) , ϕ ∈ L2(R3) .

The solution of the Schrödinger equation does not remain factorized:

ψ(t) 6=
N⊗

i=1
ϕ(t) ,

but if we project on the sub–manifold of such product states, the best possible
approximation to ψ(t) is obtained by assuming that ϕ(t) solves the Hartree equation:

i∂tϕ(t) = hϕ(t) +
(
V ∗ |ϕ(t)|2

)
ϕ(t) , ϕ(0) = ϕ ∈ L2(R3) .

The problem has been reduced from L2(R3N) to L2(R3). 6



Example 2: Hartree energy functional

Can the same idea be used to predict the ground state energy of N bosons?

Take ψ = ⊗N
i=1 ϕ and compute

〈ψ,Hψ〉 =: EHartree(ϕ) .

We can minimize over the set of product states to define the Hartree energy

EHartree := inf
ϕ∈L2(R3), ‖ϕ‖=1

EHartree(ϕ) .

Since the Hartree energy originates from a trial state it follows that

EHartree ≥ Egs .

In the mean–field regime λ = N−1 one can prove more than that, namely:
EHartree

N − Egs
N → 0 as N →∞ .
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Fermionic mean–field regime



Recall: N interacting fermions on the torus R3/2πZ3

H =
N∑

i=1
(−∆xi ) + λ

∑
1≤i<j≤N

V (xi − xj) ,

ψ(xσ(1), xσ(2), . . . , xσ(N)) = sgn(σ)ψ(x1, x2, . . . , xN) ∀σ ∈ SN .

Again the simplest possibility: gas at high density with weak interaction.

• High density: N fermions on fixed–size torus and N →∞
• What λ do we intend by “weak interaction”?

Let’s construct a trial state. We start from the plane waves

fk(x) := (2π)−3/2eik·x , k ∈ Z3

which constitute a basis of eigenfunctions for the Laplacian: −∆fk = |k|2fk .

Now we build an N–particle state:
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Fermionic mean–field regime

Consider a totally antisymmetric tensor product (Slater determinant) of plane waves:

ψ = 1
N!

∑
σ∈SN

sgn(σ) fkσ(1) ⊗ · · · ⊗ fkσ(N) ⇒ 〈ψ,
N∑

j=1
(−∆j)ψ〉 =

N∑
j=1
|kj |2 .

Minimization by occupying the Fermi ball BF := {k ∈ Z3 : |k| ≤ (3/4π)1/3N1/3}.∑
k∈BF

|k|2 ∼ N5/3 c. f. 〈ψ, λ
∑

1≤i<j≤N
V (xi − xj)ψ〉 = λN2 .

mean–field scaling regime: λ := N−1/3

Introduce an effective Planck constant ~ := N−1/3 and multiply by ~2:

H =
N∑

j=1
−~2∆xj + 1

N
∑

1≤i<j≤N
V (xi − xj) .
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Hartree–Fock energy functional

For ψ the Slater determinant constructed from the ϕi ∈ L2(R3), i = 1, . . . ,N, we set

〈ψ,Hψ〉 =: EHF(ϕ1, . . . , ϕN) (Hartree–Fock energy functional)

In the mean–field scaling regime and for V̂ ≥ 0, this has an explicit minimizer:

EHF := inf
(ϕi )N

i=1 , ‖ϕi‖=1
EHF(ϕ1, . . . , ϕN) = EHF(fki : ki ∈ BF) .

In general the plane waves are only a stationary point, not a minimizer. This is special
to the mean–field scaling regime.

Hartree and Hartree–Fock theory are of mean–field type: only (anti–symmetrized)
tensor products — minimal entanglement/avoiding linear combinations.

New: construct a refined theory that adds entanglement to the plane wave state.

10



Hartree–Fock energy functional

For ψ the Slater determinant constructed from the ϕi ∈ L2(R3), i = 1, . . . ,N, we set

〈ψ,Hψ〉 =: EHF(ϕ1, . . . , ϕN) (Hartree–Fock energy functional)

In the mean–field scaling regime and for V̂ ≥ 0, this has an explicit minimizer:

EHF := inf
(ϕi )N

i=1 , ‖ϕi‖=1
EHF(ϕ1, . . . , ϕN) = EHF(fki : ki ∈ BF) .

In general the plane waves are only a stationary point, not a minimizer. This is special
to the mean–field scaling regime.

Hartree and Hartree–Fock theory are of mean–field type: only (anti–symmetrized)
tensor products — minimal entanglement/avoiding linear combinations.

New: construct a refined theory that adds entanglement to the plane wave state.
10



Beyond Hartree–Fock:
from the Fermi Gas to a Bosonic
Effective Theory



Preparation: particle–hole transformation

The N–particle Hamiltonian in Fock space representation

H = ~2
∑
k∈Z
|k|2a∗kak + 1

2N
∑

k∈Z3

V̂ (k)
∑

p,q∈Z3

a∗p+ka∗q−kaqap .

Consider the particle–hole transformation R : F → F such that

R a∗k R∗ :=
{

a∗k k ∈ Bc
F

ak k ∈ BF .
Expand R∗HNR and normal–order to separate Hartree–Fock energy

R∗HNR = EHF + ~2
∑

p∈Bc
F

p2a∗pap − ~2
∑

h∈BF

h2a∗hah

︸ ︷︷ ︸
=: Hkin

+
∑

h∈BF

Q

︸ ︷︷ ︸
quartic in

operators a∗, a

Goal: a quadratic approximation to the excitation Hamiltonian Hkin + Q.
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Bosonization of the interaction

Observation: if we introduce collective pair operators

b∗k :=
∑

p∈Bc
F

h∈BF

δp−h,ka∗pa∗h
p “particle” outside the Fermi ball
h “hole” inside the Fermi ball

then
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗kbk + b∗kb∗−k + b−kbk

)
+O

(N 2

N
)
.

This is convenient because the b∗k and bk have approximately bosonic commutators:

[b∗k , b∗l ] = 0 , [bl , b∗k ] = δk,ln2k + E(k, l) .

But how to express Hkin through pair operators?
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Bosonization of the kinetic energy

Fermi ball BF

ωα

[Benfatto–Gallavotti ’90]
[Haldane ’94]

[Fröhlich–Götschmann–Marchetti ’95]

Localize to M = M(N) patches near the Fermi surface,

b∗α,k := 1
nα,k

∑
p∈Bc

F∩Bα

h∈BF∩Bα

δp−h,ka∗pa∗h

with nα,k chosen to normalize ‖b∗α,kΩ‖ = 1.

Linearize kinetic energy around patch center ωα:

[Hkin, b∗α,k ] ' 2~|k · ω̂α|b∗α,k ,

same as with the approximation

Hkin '
∑

k∈Z3

M∑
α=1

2~uα(k)2b∗α,kbα,k , uα(k)2 := |k·ω̂α| .
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Quadratic effective Hamiltonian

Recall

Q = 1
N
∑

k∈Z3

V̂ (k)
(
2b∗kbk + b∗kb∗−k + b−kbk

)
.

Decompose

b∗k =
M∑
α=1

nα,kb∗α,k + lower order .

Normalization:
n2α,k = #p-h pairs in patch Bα with momentum k

' 4πN2/3

M |k · ω̂α| .

kωα

HRPA = ~
∑

k∈Z3

[∑
α

uα(k)2b∗α,kbα,k + V̂ (k)
M

∑
α,β

(
uα(k)uβ(k)b∗α,kbβ,k + uα(k)uβ(k)b∗α,kb∗β,−k + h.c.

)]
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Spectrum of the effective Hamiltonian

HRPA can be diagonalized—in the bosonic approximation—by a bosonic Bogoliubov
transformation, yielding the following spectrum:

no interaction
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• plasmon mode (observable collective oscillation)
• continuous bulk of the spectrum only weakly renormalized

indicates a non–perturbative approach to Fermi liquid theory
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A rigorous result: the ground state energy

Theorem: [B–Nam–Porta–Schlein–Seiringer, Inventiones Mathematicae 225(3)
p.885 (2021) and B-Porta–Schlein–Seiringer arXiv:2106.13185]

Let V̂ ≥ 0 and ∑k∈Z3 V̂ (k)|k| < ∞. Then there exists ε > 0 such that for
N →∞ we have

EN = Epw
N + ERPA

N +O(N−1/3−ε) ,

where

ERPA
N := N−1/3

∑
k∈Z3

|k|
[∫ ∞

0
log
(
1 + V̂ (k)

(
1− λ arctanλ−1

))
dλ− 1

4 V̂ (k)
]

is the continuum approximation (M →∞) to inf spec(HRPA).
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Thank you!
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