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Many—Body Schrodinger Equation



Quantum System of N Fermions

Hamilton operator of N identical spinless particles:

N
Hy:=> (-A)+Xx > V(i—x) with V:RP5R.
i=1 1<i<j<N

Acts on the L?-subspace of antisymmetric wave functions of 3N\ variables
w(XO'(l)a X0(2)a s 7X0'(N)) = sgn(0)¢(x17x2, oo )XN) Vo € SN .

For reasonable potentials, the Hamiltonian is self-adjoint (e. g., Kato—Rellich theorem).
Time evolution is described by Schrédinger equation:

iaﬂ/)t = HNZZ)t
initial data g

} & thy = e Mty



Explicit Solutions?

= Analytical solutions up to N = 2 (in center—of-mass coordinates), or N = 3 (some
examples with high symmetry)

= Numerical methods (quantum Monte Carlo) are limited by exponential growth of
Hilbert space dimension: “curse of dimension”
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Explicit Solutions?

= Analytical solutions up to N = 2 (in center—of-mass coordinates), or N = 3 (some
examples with high symmetry)

= Numerical methods (quantum Monte Carlo) are limited by exponential growth of
Hilbert space dimension: “curse of dimension”

= In macroscopic samples (a piece of metal, a doped semiconductor) N > 1023

We need approximations!

= There is no one-size-fits-all approximation!
Range of phenomena described by the Schrodinger equation is far too large:
superconductors, neutron stars, electric vehicles,. ..
= Specify particular physical situations — mathematical idealization: scaling limits.
= Specify quantities to be approximated: which observables, which excitations, ...7



Fermionic Mean—Field Scaling



Mean—Field Regime = High Density & Weak Interaction

= Gas at high density with weak interaction.
In the limit, every particle moves in a continuous cloud generated by all the other
particles, “moves in mean field".
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Mean—Field Regime = High Density & Weak Interaction

= Gas at high density with weak interaction.
In the limit, every particle moves in a continuous cloud generated by all the other

particles, “moves in mean field".

= High density: N fermions (at least initially) in external trapping potential or
fixed—size torus and N — +o0
= “Weak” interaction? Minimize <w,zj'\’:1(—Aj)w>! Antisymm. tensor product

1
Y= > 58n(0) 0o(1) ® -+ ® Vo(n)

" o€eSN

of eigenfunctions of the Laplacian ¢;(x) := (27)~ e, k; € Z3:
o) 2 _ 2 5/3 2
ijlykjy = Z|k|ch1/3|ky ~ N c.f. <¢,AZI§<JSN V(xi—x;)1b) ~ AN? .

fermionic mean—field scaling: A= N3 (bosons: A = N71)



Semiclassical Time Scale

= Velocity ~ highest momenta k ~ N/3.

A particle traverses the entire torus in a time of order N~1/3.

No significant loss in considering only times t = N~1/37 where 7 ~ 1:
N 1
iN1/387'1/}7' - Z _AXJ' + W Z V(Xi - Xj) 7/)7 .
j=1 1<i<j<N




Semiclassical Time Scale

= Velocity ~ highest momenta k ~ N/3.

A particle traverses the entire torus in a time of order N~1/3.

No significant loss in considering only times t = N~1/37 where 7 ~ 1:
N 1
-n11/3
iNY30, 4, = > —A+ N > V(xi—x)| ¥
j=1 1<i<j<N

= Trivial step: define effective Planck constant i := N~1/3 and multiply by /2

Mean-field scaling is naturally coupled to a semiclassical scaling:

N
1
iRO by = [Z —WDg 5 > Vxi- xj)] ¥, with h= N3,

j=1 1<i<j<N

Goal: Approximate v by simpler initial value problems.



Effective Theories

= Vlasov equation:
theory on classical phase space, no quantum effects retained, “semiclassical”

= Hartree—Fock equation:
quantum, only the unavoidable entanglement due to antisymmetry of fermionic
wave functions (kinematic entanglement)

= Random Phase Approximation:

quantum, entanglement of particle-hole pairs (dynamical entanglement, to
leading order)

Caution: {Vlasov, HF,RPA} is not an ordered set (not transitive, not antisymmetric):

= For practical purposes simpler equations sometimes work better!
= Do we enlarge or restrict the set of permitted initial data?

= More effects neglected — more mathematical work to estimate them?



Vlasov Equation



Classical Approximation

= |n classical mechanics a system is described by a particle density on phase phase:
f:R3xR3—[0,00), /f(x,p)dxdpzl.

= Classical mean—field evolution for f;: Vlasov equation

of;
— +2p -V, = —F(f;) - V,f;
37‘+ P () Vp

where
F(f) = =V(Vpe), prle)i= [ Flxipdp.



From Quantum to Classical

= From quantum mechanics to phase space: For ¢ € [?(R3)®N, define the

one—particle reduced density matrix

Yo = Ntra n|e) (W]

and then the Wigner transform

1 —ip-y/h Yy Yy
Wy (x, p) = (27r)3/e Py/R <X+2,X—2> dy .

The Wigner transform is invertable (by Weyl quantization).




From Quantum to Classical

= From quantum mechanics to phase space: For ¢ € [?(R3)®N, define the
one—particle reduced density matrix

Yo = Ntra n|e) (W]

and then the Wigner transform

1 —ip-y/h

The Wigner transform is invertable (by Weyl quantization).

= Narnhofer-Sewell '81: Wy, converges to solution of Vlasov equation for analytic V.

= Spohn '81: Generalization to twice differentiable V.

= Recent results, in particular concerning singular V' such as Coulomb potential:
Saffirio, Thursday 11:30




Hartree—Fock Approximation



Hartree-Fock Approximation

Restrict QM to antisymmetrized tensor products ) = A(p1 ® ... ® @p) (no other
linear combinations permitted) and optimize the choice of the ¢; € L?(R3).

= Approximate time evolution Dirac—Frenkel principle:

e Submanifold M C H
e’ Nt/ Z,A((pl,o .. .®<p/\/70) ~ .A(901’7—® e ®SON,T) %HNwT

= Hartree-Fock equations, for i =1,2,... N:

1 N
ihargpi,’r = _h2A90i77' + N Z (V * ‘90j77"2) Pi,r

j=1
1Y _—
- — Z (V « (@i,r@))(ﬁj,r P, = orthog. projection on T, M
j=1 [Lubich '08, B-Sok—Solovej '18]




Rigorous Error Estimates

» Erd6s—Elgart—-Schlein—Yau '04: Convergence from Schrédinger equation to
Hartree—Fock equation for short times, 7 < 7. Analytic V.

= Hartree—Fock equation for scalings with weaker interaction or shorter time scale:

= Bardos—Golse—Gottlieb—Mauser '03

= frohlich—Knowles '11

= Pickl-Petrat '14

= Bach—Breteaux—Petrat—Pickl-Tzaneteas '16.

= B-Porta-Schlein '14: V e LY(R3) with [|V(p)|(1 + |p|)2dp < oo, arbitrary 7.
= generalizations: mixed states B—Jaksi¢—Porta—Saffirio-Schlein '16,
singular interactions: Chong, Lafleche, Leopold, Saffirio



One—Particle Density Matrix

= For ¢ € [?(R3)®N, the one—particle density matrix is (as before)

..... N[ (] -

= If ¢ is an antisymmetrized tensor product, 7y, is a projection in L2(R3):

N

Y=Alp1®p2®@ - ®on) © = leieil.
j=1

= Hartree—Fock equations:
0T = [—W2A+ Vxpe — Xe , 1T,

with the multiplication operator V * p;(x) = N71 [ V(x — )P (y; y)dy,
and X; the operator with integral kernel N~ 1V(x —y)HF(x; y).

10



Theorem (B—Porta—Schlein '14)
Let V e LX(R3) with [|V(p)|(1+ |p|)2dp < .

Let {¢;}?2, be an orthonormal basis in L?(R3).
Let o = A(p1 ® ... ® pp). Assume semiclassical commutators bounds

H[Xi7'71/)0]”tr < CNn, Hihaiﬁwo”‘tr < CNh .

Let
» 7y, one—particle reduced density matrix of the solution of the Schrédinger
equation with initial data g,

= yHF: solution of HF equation with initial data Vebo -

Then

c|t|
e — V£ e < CNM/0e (compare tryy, = N = tryfF) .

11



Construction of Initial Data

We require an h—gain in commutators with position and momentum:

H[Xh%ﬁo]Htr < CNh, Hihaia%ﬁo]Htr < CNh .

Verified for non—interacting fermions in different situations:

= translation invariant state: plane waves on torus (but that is stationary under the
HF evolution even when the interaction is switched on)

= in general trapping potentials [Fournais—Mikkelsen '19]: by semiclassical analysis

= in an (anisotropic) harmonic trap: by explicit computation

Experimentally: quantum quench, prepare non—interacting fermions in ground state,
than switch on the interaction by a Feshbach resonance.

12



Proof of the [BPS14] Theorem




Second Quantization

= Fermionic Fock space

F=Ca ALX®R"), =@ 0 M yeF

n>1

= Canonical anticommutation relations
{ax, a;j} =0(x—y), {ax,a}= {a;j, ay} =0.
= On (0,...,0,9(MM 0,...) € F we have % = Hy by defining
a 1 a
H=h? / dx VyagVyax + N / dxdy V(x—y)aia,a,ax

= Vacuum Q =(1,0,0,0,...) € F
= Number operator

N = /aﬁaxdx

13



Particle-Hole Transformation (remember for the RPA section!)

Use a unitary R : F — F to represent Fock space as excitations (particles or holes)
over the Hartree—Fock state, instead of particles over vacuum.

RO =Alp1®...®Qpn) €F

Ra* (o) R* := a*(pi) for / > N (creates particle)
a(p;) fori <N (creates hole).

14



Particle-Hole Transformation (remember for the RPA section!)

Use a unitary R : F — F to represent Fock space as excitations (particles or holes)
over the Hartree—Fock state, instead of particles over vacuum.

RQ:=Alp1®...®pn) € F
Ra*(p;)R* = a*(pj) fori> N (creates particle)
7 " a(p;) fori< N (creates hole).

= This is a Bogoliubov transformation:
Ra;R* = a*(ux) + a(vx),

with v = Zszllcpjﬂ(pj], u=1 — v (up to conjugations), and vy (y) := v(y, x).
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Particle-Hole Transformation (remember for the RPA section!)

Use a unitary R : F — F to represent Fock space as excitations (particles or holes)
over the Hartree—Fock state, instead of particles over vacuum.

RO =Alp1®...®Qpn) €F

Ra* (o) R* := a*(pi) for / > N (creates particle)
a(p;) fori <N (creates hole).

= This is a Bogoliubov transformation:
Ra;R* = a*(ux) + a(vx),
with v = Zszllcpjﬂ(pj], u=1 — v (up to conjugations), and vy (y) := v(y, x).
= Analogously, for ¢; ; solving the HF equations, introduce R, such that

RTQ = A((Pl,T R...xQ ()ON,T) o 14



|7¢. — YHF|lt, < Number of Excitations

= Number of excitations w.r.t. the HF-evolved state:

N .= RNR.

15



|7¢. — YHF|lt, < Number of Excitations

= Number of excitations w.r.t. the HF-evolved state:
N> = RNRE.
= A short calculation shows
¥, — Ay < CN1/2<efi7—l7'/hROQ7focefi’HT/hROQ>
= CNY2(U(T)Q, N U(7))
with U(7) := Rre ™M7/'Ry.

15



|7¢. — YHF|lt, < Number of Excitations

= Number of excitations w.r.t. the HF-evolved state:
N> = RNRE.
A short calculation shows
¥, — Ay < CN1/2<efi7—l7'/hROQ7focefi’HT/hROQ>
= CNY2(U(T)Q, N U(7))
with U(7) := Rre ™M7/'Ry.

To control the trace norm difference, it is enough to show that

(U(T)QNU(T)Q) =0(1) .

By Grénwall’s lemma, it is sufficient to prove

%<U(T)Q,NU(T)Q> < C{U(MQNU(T)Q).
15



Cancellations

= With the generator defined by ih0,U(7) = Ln(7)U(7) we have to show

|iﬁ:7<U(T)Q,NU(T)Q>I = [{U()Q, [Ln(7), NTU(T)D)| < AC(U(T)Q, N U(T)RQ).

= U(7) depends on R} which depends on the HF equation;
using the HF equation the biggest terms of Ly(7) cancel!

16



Cancellations

= With the generator defined by ih0,U(7) = Ln(7)U(7) we have to show

|iﬁ:7<U(T)Q,NU(T)Q>I = [{U()Q, [Ln(7), NTU(T)D)| < AC(U(T)Q, N U(T)RQ).

= U(7) depends on R} which depends on the HF equation;
using the HF equation the biggest terms of Ly(7) cancel!

= Remaining:
h(%W(T)Q,NU(T)m
~ I:tl/dxdy V(x—y)(U(T)Q, a*(ury)a(ur,y)a(vrx)a(ur ) U(T)RQ) .

= Easy bound O(N), but need O(RN).

16



Using the Semiclassical Commutators

= Have to extract a factor h:

/b/dxdy V(x=y)(U(7)Q, a"(ur,y)a(ur,y)a(vrx)a(urx) U(T)S).

2

Recal: v=v*, u=1—v:

dx vy xtrx = 0.

= But there is V(x—y).

17



Using the Semiclassical Commutators
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Using the Semiclassical Commutators

= Have to extract a factor h:
1 *
N/dxdy V(x=y)(U(7)Q, a"(ur,y)a(ur,y)a(vrx)a(urx) U(T)S).

Recall: v=v2, u=1—v:

dx vy xtrx = 0.
= But there is V(x—y). ~ Commute u; and V.

= The variables x and y can be treated separately using the Fourier decomposition
V(x—y) = > pers \A/(p) elPxeg=ipy.

/dvaxe s —/dvaX[e s ur] (s /dvaX[e’pX,fyT 1(-, x).
%,_/
~ CNh
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Using the Semiclassical Commutators

= Have to extract a factor h:
1 *
N/dxdy V(x=y)(U(7)Q, a"(ur,y)a(ur,y)a(vrx)a(urx) U(T)S).

Recall: v=v2, u=1—v:

dx vy xtrx = 0.
= But there is V(x—y). ~ Commute u; and V.

= The variables x and y can be treated separately using the Fourier decomposition
V(x—y) = > pers \A/(p) elPxeg=ipy.

/dx Vo x€P XUy —/dx vrx[eP, ur]( /dx Vo [€P X AHF] (-, %),
%,_/
~ CNh [ ]

17



Random Phase Approximation




Back to the Particle—-Hole Transformation

Our approach to RPA: start from the Fermi ball of the Hamiltonian on the torus.
The Fermi ball is stationary under HF evolution. Consider its excitations.

In momentum representation the particle-hole transformation acts as

2* ‘k’ > ( )1/3N1/3
RajR* =3 %
ay { a0 k| < (2 )1/3N1/3

Expand R*HyR and normal—order

* 2 2 _*
R*HyR = EXY + k Zpaap Zhahah + X + Q
pEBE heBr
. Hkin exchange term, quartic in
- negligible operators a* and a

Goal: a quadratic approximation to the excitation Hamiltonian H" + Q.

(Quadratic Hamiltonians can be diagonalized by Bogoliubov transformations.) 18



Bosonization of the Interaction

Observe: if we introduce collective pair operators

. p “particle” outside the Fermi ball
= D Gp-hkapah e .
A h  “hole” inside the Fermi ball
pEBE
heBE
then A
Zv ) (2bibi + byb®y + b kbk)+(9<N)

keZ3

This is convenient because the b; and b, have approximately bosonic commutators:

[bltv b;k] =0 , [b/, blt] = 6/(,/”% —|—8(k, I) o

19



Bosonization of the Interaction

Observe: if we introduce collective pair operators

. % p ‘“particle” outside the Fermi ball
= D Gp-hkapah e .
A h  “hole” inside the Fermi ball
pEBE
heBE
then A2
Zv ) (2bibi + byb®y + b kbk)+(9<N)

keZ3

This is convenient because the b; and b, have approximately bosonic commutators:

[bltv b;k] =0 , [b/, blt] = 6/(,/”% —|—8(k, I) o

But how to express HKI" through pair operators?

19



Bosonization of the Kinetic Energy

Fermi ball B¢ Localize to M = M(N) patches near the Fermi surface,
b* , = i Z 5 h ka* a*
ak T 2 p—h,kdpah
’ PGBFOBQ

heBFNBa
with n, x chosen to normalize ||b} Q|| = 1.

[Benfatto—Gallavotti '90]
[Haldane '94]
[Frohlich—Gétschmann—Marchetti '95]

[Kopietz et al. '95]

20



Bosonization of the Kinetic Energy

Fermi ball B¢

[Benfatto—Gallavotti '90]
[Haldane '94]
[Frohlich—Gétschmann—Marchetti '95]

[Kopietz et al. '95]

Localize to M = M(N) patches near the Fermi surface,
ak = Z p—h,kdpdhp
Kk peBenB,
heBFNBa

with n k chosen to normalize ||b}, , Q[ = 1.

Linearize kinetic energy around patch center wy:
ki ~
[H*", b;,k] ~ 2h|k - wa\b;k
We approximate

M
HA™ o NN " 2hun (k)b bak,  Ua(k)? = k-Gl
kez3 a=1

20



Decomposing the Interaction over Patches

Recall

Q= % ™ V(K) (2biby + b + b_iby)
kez3
Decompose
M

b; = No.k b’ .« + lower order .
k Kok

a=1

21



Decomposing the Interaction over Patches

Reca” FN

Q= % ™ V(K) (2biby + b + b_iby)
kez? /

Decompose .
M ' ;

by = Z Na kbyy i + lower order . ' A

a=1 I

Normalization: i 1

nik = #p-h pairs in patch B, with momentum k / 1

v

21



Decomposing the Interaction over Patches

Recall 4
Z V(k) (2bjby + byb*, + b_yby) L
k€Z3 / k
Decompose //
M p i
by = Z Ng kb}, i + lower order . /! A
. . a=1 ’ ! g
Normalization: ) |
nik = #p-h pairs in patch B, with momentum k ; //
47r N2/3 47 N2/3 b ,’/
~ |k - @o| = ua (k)2 . 1 ) ]
Effective Quadratlc Bosonic Hamiltonian
ff 2,4 V (k) . . s
H =1 1> ua®) baykba,k—l—vz ua (Kug(R) b} bg K+ ua (K ug(k) bl kb ith.c.
kez3l « a,B 21




Bogoliubov Diagonalization

Quadratic Hamiltonians can be diagonalized by a Bogoliubov transformation

T = exp K(k)a bl (bs _, —hc. | .
(Z Z ,6 o,k PB,—k )

keZ? a,p=1
Expanding into commutators we find
M M

T bai T > cosh(K(k))asbs i+ > sinh(K(k))a,3b5 &
8=1 p=1

and choose the M x M-matrix K(k) to make b*b*~ and bb—terms vanish from Hef:

M
THT ~ ERPA+ 1 )" > E(K)asbl ibsk -
keZ3 a,p=1
In particular, the ground state of H* is £gs ~ TS, and therefore the ground state of

Hp is approximately RT$2. We add bosonic excitations and follow their evolution!
22



Effective Bosonic Evolution

Note that this is an (approximately) bosonic second quantization:

M
T*HT =~ ERA+ 7 Y Y E(K)a,bl ibsk
keZ3 a,f=1
~ ERPA + dlbosonic (7 @D E(K) ) -
keZ3
= HB
Consider a one—boson wave function
nehg:=Pch.
keZ3
Then
ne = efiHBT/hno

is the time—evolution in the (first quantized) one—boson space.
23



For n € bg let

ZZbaw

kez3 a=1
Theorem (B—Nam-Porta—Schlein—Seiringer '21)

Assume that \7(p) is compactly supported and non—negative. Let

1, i 1, *
=5 b m) B Q. = 5B ()b )2

Then
|7 IRRT e — e ETEITIART E || < Cn B

If Hgmi = ein;i (e € R) then we have constructed an approximate eigenstate of the
many—-body Hamiltonian, evolving up to times |7| < N/45 just with a phase:

e NIRRT €y ~ e*i(Eﬁ/W+E:5PA+Zjl1 eJ)T/ﬁRTgo )
24



Thank you!
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