Effective Dynamics of Interacting Fermions

Niels Benedikter

2014-2022 joint work with Vojkan Jakšić, Phan Thành Nam, Marcello Porta, Chiara Saffirio, Benjamin Schlein, Robert Seiringer, Jan Philip Solovej, and Jérémy Sok

Università degli Studi di Milano

Many-Body Schrödinger Equation

Quantum System of N Fermions

Hamilton operator of N identical spinless particles:

$$
H_{N}:=\sum_{i=1}^{N}\left(-\Delta_{i}\right)+\lambda \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right) \quad \text { with } V: \mathbb{R}^{3} \rightarrow \mathbb{R} .
$$

Acts on the L^{2}-subspace of antisymmetric wave functions of $3 N$ variables

$$
\psi\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(N)}\right)=\operatorname{sgn}(\sigma) \psi\left(x_{1}, x_{2}, \ldots, x_{N}\right) \quad \forall \sigma \in S_{N}
$$

For reasonable potentials, the Hamiltonian is self-adjoint (e.g., Kato-Rellich theorem).
Time evolution is described by Schrödinger equation:

$$
\left.\begin{array}{l}
i \partial_{t} \psi_{t}=H_{N} \psi_{t} \\
\text { initial data } \psi_{0}
\end{array}\right\} \quad \Leftrightarrow \quad \psi_{t}=e^{-i H_{N} t} \psi_{0}
$$

Explicit Solutions?

- Analytical solutions up to $N=2$ (in center-of-mass coordinates), or $N=3$ (some examples with high symmetry)
- Numerical methods (quantum Monte Carlo) are limited by exponential growth of Hilbert space dimension: "curse of dimension"

Explicit Solutions?

- Analytical solutions up to $N=2$ (in center-of-mass coordinates), or $N=3$ (some examples with high symmetry)
- Numerical methods (quantum Monte Carlo) are limited by exponential growth of Hilbert space dimension: "curse of dimension"
- In macroscopic samples (a piece of metal, a doped semiconductor) $N>10^{23}$ We need approximations!

Explicit Solutions?

- Analytical solutions up to $N=2$ (in center-of-mass coordinates), or $N=3$ (some examples with high symmetry)
- Numerical methods (quantum Monte Carlo) are limited by exponential growth of Hilbert space dimension: "curse of dimension"
- In macroscopic samples (a piece of metal, a doped semiconductor) $N>10^{23}$

We need approximations!

- There is no one-size-fits-all approximation!

Range of phenomena described by the Schrödinger equation is far too large: superconductors, neutron stars, electric vehicles,...

- Specify particular physical situations - mathematical idealization: scaling limits.
- Specify quantities to be approximated: which observables, which excitations, ... ?

Fermionic Mean-Field Scaling

Mean-Field Regime $=$ High Density \& Weak Interaction

- Gas at high density with weak interaction. In the limit, every particle moves in a continuous cloud generated by all the other particles, "moves in mean field".

Mean-Field Regime $=$ High Density \& Weak Interaction

- Gas at high density with weak interaction. In the limit, every particle moves in a continuous cloud generated by all the other particles, "moves in mean field".
- High density: N fermions (at least initially) in external trapping potential or fixed-size torus and $N \rightarrow+\infty$

Mean-Field Regime $=$ High Density \& Weak Interaction

- Gas at high density with weak interaction. In the limit, every particle moves in a continuous cloud generated by all the other particles, "moves in mean field".
- High density: N fermions (at least initially) in external trapping potential or fixed-size torus and $N \rightarrow+\infty$
- "Weak" interaction? Minimize $\left\langle\psi, \sum_{j=1}^{N}\left(-\Delta_{j}\right) \psi\right\rangle$! Antisymm. tensor product

$$
\psi=\frac{1}{N!} \sum_{\sigma \in S_{N}} \operatorname{sgn}(\sigma) \varphi_{\sigma(1)} \otimes \cdots \otimes \varphi_{\sigma(N)}
$$

of eigenfunctions of the Laplacian $\varphi_{j}(x):=(2 \pi)^{-3 / 2} e^{i k_{j} \cdot x}, k_{j} \in \mathbb{Z}^{3}$:

$$
\sum_{j=1}^{N}\left|k_{j}\right|^{2}=\sum_{|k| \leq c N^{1 / 3}}|k|^{2} \sim N^{5 / 3} \quad \text { c. f. } \quad\left\langle\psi, \lambda \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right) \psi\right\rangle \sim \lambda N^{2}
$$

fermionic mean-field scaling: $\lambda=N^{-1 / 3}$ (bosons: $\lambda=N^{-1}$)

Semiclassical Time Scale

- Velocity \sim highest momenta $k \sim N^{1 / 3}$. A particle traverses the entire torus in a time of order $N^{-1 / 3}$. No significant loss in considering only times $t=N^{-1 / 3} \tau$, where $\tau \sim 1$:

$$
i N^{1 / 3} \partial_{\tau} \psi_{\tau}=\left[\sum_{j=1}^{N}-\Delta_{x_{j}}+\frac{1}{N^{1 / 3}} \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right)\right] \psi_{\tau} .
$$

Semiclassical Time Scale

- Velocity \sim highest momenta $k \sim N^{1 / 3}$.

A particle traverses the entire torus in a time of order $N^{-1 / 3}$.
No significant loss in considering only times $t=N^{-1 / 3} \tau$, where $\tau \sim 1$:

$$
i N^{1 / 3} \partial_{\tau} \psi_{\tau}=\left[\sum_{j=1}^{N}-\Delta_{x_{j}}+\frac{1}{N^{1 / 3}} \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right)\right] \psi_{\tau} .
$$

- Trivial step: define effective Planck constant $\hbar:=N^{-1 / 3}$ and multiply by \hbar^{2}

Mean-field scaling is naturally coupled to a semiclassical scaling:

$$
i \hbar \partial_{\tau} \psi_{\tau}=\left[\sum_{j=1}^{N}-\hbar^{2} \Delta_{x_{j}}+\frac{1}{N} \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right)\right] \psi_{\tau} \quad \text { with } \hbar=N^{-1 / 3}
$$

Goal: Approximate ψ_{τ} by simpler initial value problems.

Effective Theories

- Vlasov equation:
theory on classical phase space, no quantum effects retained, "semiclassical"
- Hartree-Fock equation:
quantum, only the unavoidable entanglement due to antisymmetry of fermionic wave functions (kinematic entanglement)
- Random Phase Approximation:
quantum, entanglement of particle-hole pairs (dynamical entanglement, to leading order)

Caution: $\{$ Vlasov, HF, RPA \} is not an ordered set (not transitive, not antisymmetric):

- For practical purposes simpler equations sometimes work better!
- Do we enlarge or restrict the set of permitted initial data?
- More effects neglected - more mathematical work to estimate them?

Vlasov Equation

Classical Approximation

- In classical mechanics a system is described by a particle density on phase phase:

$$
f: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow[0, \infty), \quad \int f(x, p) \mathrm{d} x \mathrm{~d} p=1
$$

- Classical mean-field evolution for f_{τ} : Vlasov equation

$$
\frac{\partial f_{\tau}}{\partial \tau}+2 p \cdot \nabla_{x} f_{\tau}=-F\left(f_{\tau}\right) \cdot \nabla_{p} f_{\tau}
$$

where

$$
F\left(f_{\tau}\right):=-\nabla\left(V * \rho_{f_{\tau}}\right), \quad \rho_{f_{\tau}}(x):=\int f_{\tau}(x, p) \mathrm{d} p
$$

From Quantum to Classical

- From quantum mechanics to phase space: For $\psi \in L^{2}\left(\mathbb{R}^{3}\right)^{\otimes N}$, define the one-particle reduced density matrix

$$
\gamma_{\psi}:=N \operatorname{tr}_{2, \ldots, N}|\psi\rangle\langle\psi|
$$

and then the Wigner transform

$$
W_{\psi}(x, p):=\frac{1}{(2 \pi)^{3}} \int e^{-i p \cdot y / \hbar} \gamma_{\psi}\left(x+\frac{y}{2}, x-\frac{y}{2}\right) d y .
$$

The Wigner transform is invertable (by Weyl quantization).

From Quantum to Classical

- From quantum mechanics to phase space: For $\psi \in L^{2}\left(\mathbb{R}^{3}\right)^{\otimes N}$, define the one-particle reduced density matrix

$$
\gamma_{\psi}:=N \operatorname{tr}_{2, \ldots, N}|\psi\rangle\langle\psi|
$$

and then the Wigner transform

$$
W_{\psi}(x, p):=\frac{1}{(2 \pi)^{3}} \int e^{-i p \cdot y / \hbar} \gamma_{\psi}\left(x+\frac{y}{2}, x-\frac{y}{2}\right) d y
$$

The Wigner transform is invertable (by Weyl quantization).

- Narnhofer-Sewell '81: $W_{\psi_{\tau}}$ converges to solution of Vlasov equation for analytic V.
- Spohn '81: Generalization to twice differentiable V.
- Recent results, in particular concerning singular V such as Coulomb potential: Saffirio, Thursday 11:30

Hartree-Fock Approximation

Hartree-Fock Approximation

Restrict QM to antisymmetrized tensor products $\psi=\mathcal{A}\left(\varphi_{1} \otimes \ldots \otimes \varphi_{N}\right)$ (no other linear combinations permitted) and optimize the choice of the $\varphi_{j} \in L^{2}\left(\mathbb{R}^{3}\right)$.

- Approximate time evolution $e^{-i H_{N} \tau / \hbar} \mathcal{A}\left(\varphi_{1,0} \otimes \ldots \otimes \varphi_{N, 0}\right) \simeq \mathcal{A}\left(\varphi_{1, \tau} \otimes \ldots \otimes \varphi_{N, \tau}\right)$
- Hartree-Fock equations, for $i=1,2, \ldots N$:

$$
\begin{aligned}
i \hbar \partial_{\tau} \varphi_{i, \tau}=-\hbar^{2} \Delta \varphi_{i, \tau} & +\frac{1}{N} \sum_{j=1}^{N}\left(V *\left|\varphi_{j, \tau}\right|^{2}\right) \varphi_{i, \tau} \\
& -\frac{1}{N} \sum_{j=1}^{N}\left(V *\left(\varphi_{i, \tau} \overline{\varphi_{j, \tau}}\right)\right) \varphi_{j, \tau}
\end{aligned}
$$

Rigorous Error Estimates

- Erdős-Elgart-Schlein-Yau '04: Convergence from Schrödinger equation to Hartree-Fock equation for short times, $\tau<\tau_{0}$. Analytic V.
- Hartree-Fock equation for scalings with weaker interaction or shorter time scale:
- Bardos-Golse-Gottlieb-Mauser '03
- Fröhlich-Knowles '11
- Pickl-Petrat '14
- Bach-Breteaux-Petrat-Pickl-Tzaneteas '16.
- B-Porta-Schlein '14: $V \in L^{1}\left(\mathbb{R}^{3}\right)$ with $\int|\hat{V}(p)|(1+|p|)^{2} \mathrm{~d} p<\infty$, arbitrary τ.
- generalizations: mixed states B-Jakšić-Porta-Saffirio-Schlein '16, singular interactions: Chong, Lafleche, Leopold, Saffirio

One-Particle Density Matrix

- For $\psi \in L^{2}\left(\mathbb{R}^{3}\right)^{\otimes N}$, the one-particle density matrix is (as before)

$$
\gamma_{\psi}:=N \operatorname{tr}_{2, \ldots, N}|\psi\rangle\langle\psi| .
$$

- If ψ is an antisymmetrized tensor product, γ_{ψ} is a projection in $L^{2}\left(\mathbb{R}^{3}\right)$:

$$
\psi=\mathcal{A}\left(\varphi_{1} \otimes \varphi_{2} \otimes \cdots \otimes \varphi_{N}\right) \quad \Leftrightarrow \quad \gamma_{\psi}=\sum_{j=1}^{N}\left|\varphi_{j}\right\rangle\left\langle\varphi_{j}\right| .
$$

- Hartree-Fock equations:

$$
i \hbar \partial_{t} \gamma_{t}^{\mathrm{HF}}=\left[-\hbar^{2} \Delta+V * \rho_{t}-X_{t}, \gamma_{t}^{\mathrm{HF}}\right]
$$

with the multiplication operator $V * \rho_{t}(x)=N^{-1} \int V(x-y) \gamma_{t}^{\mathrm{HF}}(y ; y) \mathrm{d} y$, and X_{t} the operator with integral kernel $N^{-1} V(x-y) \gamma_{t}^{\mathrm{HF}}(x ; y)$.

Theorem (B-Porta-Schlein '14)

Let $V \in L^{1}\left(\mathbb{R}^{3}\right)$ with $\int|\hat{V}(p)|(1+|p|)^{2} d p<\infty$.
Let $\left\{\varphi_{j}\right\}_{j=1}^{\infty}$ be an orthonormal basis in $L^{2}\left(\mathbb{R}^{3}\right)$.
Let $\psi_{0}=\mathcal{A}\left(\varphi_{1} \otimes \ldots \otimes \varphi_{N}\right)$. Assume semiclassical commutators bounds

$$
\left.\left\|\left[x_{i}, \gamma_{\psi_{0}}\right]\right\|_{\mathrm{tr}} \leq C N \hbar, \quad \| i \hbar \partial_{i}, \gamma_{\psi_{0}}\right] \|_{\mathrm{tr}} \leq C N \hbar
$$

Let

- $\gamma_{\psi_{t}}$: one-particle reduced density matrix of the solution of the Schrödinger equation with initial data ψ_{0},
- $\gamma_{t}^{H F}$: solution of HF equation with initial data $\gamma_{\psi_{0}}$.

Then

$$
\left\|\gamma_{\psi_{t}}-\gamma_{t}^{H F}\right\|_{\operatorname{tr}} \leq C N^{1 / 6} e^{c e^{c|t|}} \quad\left(\text { compare } \operatorname{tr} \gamma_{\psi_{t}}=N=\operatorname{tr} \gamma_{t}^{H F}\right)
$$

Construction of Initial Data

We require an \hbar-gain in commutators with position and momentum:

$$
\left.\left\|\left[x_{i}, \gamma_{\psi_{0}}\right]\right\|_{\mathrm{tr}} \leq C N \hbar, \quad \| i \hbar \partial_{i}, \gamma_{\psi_{0}}\right] \|_{\mathrm{tr}} \leq C N \hbar
$$

Verified for non-interacting fermions in different situations:

- translation invariant state: plane waves on torus (but that is stationary under the HF evolution even when the interaction is switched on)
- in general trapping potentials [Fournais-Mikkelsen '19]: by semiclassical analysis
- in an (anisotropic) harmonic trap: by explicit computation

Experimentally: quantum quench, prepare non-interacting fermions in ground state, than switch on the interaction by a Feshbach resonance.

Proof of the [BPS14] Theorem

Second Quantization

- Fermionic Fock space

$$
\mathcal{F}=\mathbb{C} \oplus \bigoplus_{n \geq 1} \mathcal{A} L^{2}\left(\mathbb{R}^{3 n}\right), \quad \psi=\left(\psi^{(0)}, \psi^{(1)}, \ldots, \psi^{(N)}, \ldots\right) \in \mathcal{F}
$$

- Canonical anticommutation relations

$$
\left\{a_{x}, a_{y}^{*}\right\}=\delta(x-y), \quad\left\{a_{x}, a_{y}\right\}=\left\{a_{y}^{*}, a_{x}^{*}\right\}=0
$$

- On $\left(0, \ldots, 0, \psi^{(N)}, 0, \ldots\right) \in \mathcal{F}$ we have $\mathcal{H}=H_{N}$ by defining

$$
\mathcal{H}:=\hbar^{2} \int \mathrm{~d} x \nabla_{x} a_{x}^{*} \nabla_{x} a_{x}+\frac{1}{2 N} \int \mathrm{~d} x \mathrm{~d} y V(x-y) a_{x}^{*} a_{y}^{*} a_{y} a_{x}
$$

- Vacuum $\Omega=(1,0,0,0, \ldots) \in \mathcal{F}$
- Number operator

$$
\mathcal{N}=\int a_{x}^{*} a_{x} \mathrm{~d} x
$$

Particle-Hole Transformation (remember for the RPA section!)

Use a unitary $R: \mathcal{F} \rightarrow \mathcal{F}$ to represent Fock space as excitations (particles or holes) over the Hartree-Fock state, instead of particles over vacuum.

$$
\begin{aligned}
R \Omega & :=\mathcal{A}\left(\varphi_{1} \otimes \ldots \otimes \varphi_{N}\right) \in \mathcal{F} \\
R^{*}\left(\varphi_{i}\right) R^{*} & :=\left\{\begin{array}{ccc}
a^{*}\left(\varphi_{i}\right) & \text { for } i>N & \text { (creates particle) } \\
a\left(\varphi_{i}\right) & \text { for } i \leq N & \text { (creates hole). } .
\end{array}\right.
\end{aligned}
$$

Particle-Hole Transformation (remember for the RPA section!)

Use a unitary $R: \mathcal{F} \rightarrow \mathcal{F}$ to represent Fock space as excitations (particles or holes) over the Hartree-Fock state, instead of particles over vacuum.

$$
\begin{aligned}
R \Omega & :=\mathcal{A}\left(\varphi_{1} \otimes \ldots \otimes \varphi_{N}\right) \in \mathcal{F} \\
R^{*}\left(\varphi_{i}\right) R^{*} & :=\left\{\begin{array}{ccc}
a^{*}\left(\varphi_{i}\right) & \text { for } i>N & \text { (creates particle) } \\
a\left(\varphi_{i}\right) & \text { for } i \leq N & \text { (creates hole). } .
\end{array}\right.
\end{aligned}
$$

- This is a Bogoliubov transformation:

$$
R a_{x}^{*} R^{*}=a^{*}\left(u_{x}\right)+a\left(v_{x}\right),
$$

with $v=\sum_{j=1}^{N}\left|\varphi_{j}\right\rangle\left\langle\varphi_{j}\right|, u=\mathbb{1}-v$ (up to conjugations), and $v_{x}(y):=v(y, x)$.

Particle-Hole Transformation (remember for the RPA section!)

Use a unitary $R: \mathcal{F} \rightarrow \mathcal{F}$ to represent Fock space as excitations (particles or holes) over the Hartree-Fock state, instead of particles over vacuum.

$$
\begin{aligned}
R \Omega & :=\mathcal{A}\left(\varphi_{1} \otimes \ldots \otimes \varphi_{N}\right) \in \mathcal{F} \\
R a^{*}\left(\varphi_{i}\right) R^{*} & :=\left\{\begin{array}{ccc}
a^{*}\left(\varphi_{i}\right) & \text { for } i>N & \text { (creates particle) } \\
a\left(\varphi_{i}\right) & \text { for } i \leq N & \text { (creates hole). }
\end{array}\right.
\end{aligned}
$$

- This is a Bogoliubov transformation:

$$
R a_{x}^{*} R^{*}=a^{*}\left(u_{x}\right)+a\left(v_{x}\right),
$$

with $v=\sum_{j=1}^{N}\left|\varphi_{j}\right\rangle\left\langle\varphi_{j}\right|, u=\mathbb{1}-v$ (up to conjugations), and $v_{x}(y):=v(y, x)$.

- Analogously, for $\varphi_{j, \tau}$ solving the HF equations, introduce R_{τ} such that

$$
R_{\tau} \Omega=\mathcal{A}\left(\varphi_{1, \tau} \otimes \ldots \otimes \varphi_{N, \tau}\right) .
$$

- Number of excitations w.r.t. the HF-evolved state:

$$
\mathcal{N}_{\tau}^{\mathrm{exc}}:=R_{\tau} \mathcal{N} R_{\tau}^{*} .
$$

- Number of excitations w.r.t. the HF-evolved state:

$$
\mathcal{N}_{\tau}^{\mathrm{exc}}:=R_{\tau} \mathcal{N} R_{\tau}^{*} .
$$

- A short calculation shows

$$
\begin{aligned}
\left\|\gamma_{\psi_{\tau}}-\gamma_{\tau}^{\mathrm{HF}}\right\|_{\mathrm{tr}} & \leq C N^{1 / 2}\left\langle e^{-i \mathcal{H} \tau / \hbar} R_{0} \Omega, \mathcal{N}_{\tau}^{\mathrm{exc}} e^{-i \mathcal{H} \tau / \hbar} R_{0} \Omega\right\rangle \\
& =C N^{1 / 2}\langle U(\tau) \Omega, \mathcal{N} U(\tau) \Omega\rangle
\end{aligned}
$$

with $U(\tau):=R_{\tau}^{*} e^{-i \mathcal{H} \tau / \hbar} R_{0}$.

- Number of excitations w.r.t. the HF-evolved state:

$$
\mathcal{N}_{\tau}^{\mathrm{exc}}:=R_{\tau} \mathcal{N} R_{\tau}^{*} .
$$

- A short calculation shows

$$
\begin{aligned}
\left\|\gamma_{\psi_{\tau}}-\gamma_{\tau}^{\mathrm{HF}}\right\|_{\mathrm{tr}} & \leq C N^{1 / 2}\left\langle e^{-i \mathcal{H} \tau / \hbar} R_{0} \Omega, \mathcal{N}_{\tau}^{\mathrm{exc}} e^{-i \mathcal{H} \tau / \hbar} R_{0} \Omega\right\rangle \\
& =C N^{1 / 2}\langle U(\tau) \Omega, \mathcal{N} U(\tau) \Omega\rangle
\end{aligned}
$$

with $U(\tau):=R_{\tau}^{*} e^{-i \mathcal{H} \tau / \hbar} R_{0}$.

- To control the trace norm difference, it is enough to show that

$$
\langle U(\tau) \Omega, \mathcal{N} U(\tau) \Omega\rangle=\mathcal{O}(1)
$$

- By Grönwall's lemma, it is sufficient to prove

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\langle U(\tau) \Omega, \mathcal{N} U(\tau) \Omega\rangle \leq C_{t}\langle U(\tau) \Omega, \mathcal{N} U(\tau) \Omega\rangle
$$

Cancellations

- With the generator defined by $i \hbar \partial_{\tau} U(\tau)=\mathcal{L}_{N}(\tau) U(\tau)$ we have to show

$$
\left|i \hbar \frac{\mathrm{~d}}{\mathrm{~d} \tau}\langle U(\tau) \Omega, \mathcal{N} U(\tau) \Omega\rangle\right|=\left|\left\langle U(\tau) \Omega,\left[\mathcal{L}_{N}(\tau), \mathcal{N}\right] U(\tau) \Omega\right\rangle\right| \leq \hbar C_{\tau}\langle U(\tau) \Omega, \mathcal{N} U(\tau) \Omega\rangle
$$

- $U(\tau)$ depends on R_{τ}^{*} which depends on the HF equation; using the HF equation the biggest terms of $\mathcal{L}_{N}(\tau)$ cancel!

Cancellations

- With the generator defined by $i \hbar \partial_{\tau} U(\tau)=\mathcal{L}_{N}(\tau) U(\tau)$ we have to show

$$
\left|i \hbar \frac{\mathrm{~d}}{\mathrm{~d} \tau}\langle U(\tau) \Omega, \mathcal{N} U(\tau) \Omega\rangle\right|=\left|\left\langle U(\tau) \Omega,\left[\mathcal{L}_{N}(\tau), \mathcal{N}\right] U(\tau) \Omega\right\rangle\right| \leq \hbar C_{\tau}\langle U(\tau) \Omega, \mathcal{N} U(\tau) \Omega\rangle
$$

- $U(\tau)$ depends on R_{τ}^{*} which depends on the HF equation; using the HF equation the biggest terms of $\mathcal{L}_{N}(\tau)$ cancel!
- Remaining:

$$
\begin{aligned}
& \hbar \frac{\mathrm{d}}{\mathrm{~d} \tau}\langle U(\tau) \Omega, \mathcal{N} U(\tau) \Omega\rangle \\
& \simeq \frac{1}{N} \int \mathrm{~d} x \mathrm{~d} y V(x-y)\left\langle U(\tau) \Omega, a^{*}\left(u_{\tau, y}\right) a\left(u_{\tau, y}\right) a\left(v_{\tau, x}\right) a\left(u_{\tau, x}\right) U(\tau) \Omega\right\rangle
\end{aligned}
$$

- Easy bound $\mathcal{O}(\mathcal{N})$, but need $\mathcal{O}(\hbar \mathcal{N})$.

Using the Semiclassical Commutators

- Have to extract a factor \hbar :

$$
\frac{1}{N} \int \mathrm{~d} x \mathrm{~d} y V(x-y)\left\langle U(\tau) \Omega, a^{*}\left(u_{\tau, y}\right) a\left(u_{\tau, y}\right) a\left(v_{\tau, x}\right) a\left(u_{\tau, x}\right) U(\tau) \Omega\right\rangle
$$

Recall: $v=v^{2}, u=\mathbb{1}-v$:

$$
\int \mathrm{d} x v_{\tau, x} u_{\tau, x}=0
$$

- But there is $V(x-y)$.

Using the Semiclassical Commutators

- Have to extract a factor \hbar :

$$
\frac{1}{N} \int \mathrm{~d} x \mathrm{~d} y V(x-y)\left\langle U(\tau) \Omega, a^{*}\left(u_{\tau, y}\right) a\left(u_{\tau, y}\right) a\left(v_{\tau, x}\right) a\left(u_{\tau, x}\right) U(\tau) \Omega\right\rangle
$$

Recall: $v=v^{2}, u=\mathbb{1}-v$:

$$
\int \mathrm{d} x v_{\tau, x} u_{\tau, x}=0
$$

- But there is $V(x-y)$. \sim Commute u_{τ} and V.

Using the Semiclassical Commutators

- Have to extract a factor \hbar :

$$
\frac{1}{N} \int \mathrm{~d} x \mathrm{~d} y V(x-y)\left\langle U(\tau) \Omega, a^{*}\left(u_{\tau, y}\right) a\left(u_{\tau, y}\right) a\left(v_{\tau, x}\right) a\left(u_{\tau, x}\right) U(\tau) \Omega\right\rangle
$$

Recall: $v=v^{2}, u=\mathbb{1}-v$:

$$
\int \mathrm{d} x v_{\tau, x} u_{\tau, x}=0
$$

- But there is $V(x-y)$. \sim Commute u_{τ} and V.
- The variables x and y can be treated separately using the Fourier decomposition $V(x-y)=\sum_{p \in \mathbb{Z}^{3}} \hat{V}(p) e^{i p \cdot x} e^{-i p \cdot y}:$

$$
\int \mathrm{d} x v_{\tau, x} e^{i p \cdot x} u_{\tau, x}=\int \mathrm{d} x v_{\tau, x}\left[e^{i p \cdot x}, u_{\tau}\right](\cdot, x)=\int \mathrm{d} x v_{\tau, x} \underbrace{\left[e^{i p \cdot x}, \gamma_{\tau}^{\mathrm{HF}}\right](\cdot, x)}_{\simeq C N \hbar} .
$$

Using the Semiclassical Commutators

- Have to extract a factor \hbar :

$$
\frac{1}{N} \int \mathrm{~d} x \mathrm{~d} y V(x-y)\left\langle U(\tau) \Omega, a^{*}\left(u_{\tau, y}\right) a\left(u_{\tau, y}\right) a\left(v_{\tau, x}\right) a\left(u_{\tau, x}\right) U(\tau) \Omega\right\rangle
$$

Recall: $v=v^{2}, u=\mathbb{1}-v$:

$$
\int \mathrm{d} x v_{\tau, x} u_{\tau, x}=0
$$

- But there is $V(x-y)$. \sim Commute u_{τ} and V.
- The variables x and y can be treated separately using the Fourier decomposition $V(x-y)=\sum_{p \in \mathbb{Z}^{3}} \hat{V}(p) e^{i p \cdot x} e^{-i p \cdot y}:$

$$
\int \mathrm{d} x v_{\tau, x} e^{i p \cdot x} u_{\tau, x}=\int \mathrm{d} x v_{\tau, x}\left[e^{i p \cdot x}, u_{\tau}\right](\cdot, x)=\int \mathrm{d} x v_{\tau, x} \underbrace{\left[e^{i p \cdot x}, \gamma_{\tau}^{\mathrm{HF}}\right](\cdot, x)}_{\simeq C N \hbar} .
$$

Random Phase Approximation

Back to the Particle-Hole Transformation

Our approach to RPA: start from the Fermi ball of the Hamiltonian on the torus. The Fermi ball is stationary under HF evolution. Consider its excitations.

In momentum representation the particle-hole transformation acts as

$$
R a_{k}^{*} R^{*}:= \begin{cases}a_{k}^{*} & |k|>\left(\frac{3}{4 \pi}\right)^{1 / 3} N^{1 / 3} \\ a_{k} & |k| \leq\left(\frac{3}{4 \pi}\right)^{1 / 3} N^{1 / 3} .\end{cases}
$$

Expand $R^{*} H_{N} R$ and normal-order

$$
R^{*} H_{N} R=E_{N}^{\mathrm{pw}}+\underbrace{\hbar^{2} \sum_{p \in \mathcal{B}_{F}^{c}} p^{2} a_{p}^{*} a_{p}-\hbar^{2} \sum_{h \in \mathcal{B}_{F}} h^{2} a_{h}^{*} a_{h}}_{=: H^{\text {kin }}}+\underbrace{X}_{\begin{array}{c}
\text { exchange term, } \\
\text { negligible }
\end{array}}+\underbrace{}_{\begin{array}{c}
\text { quartic in } \\
\text { operators } a^{*}
\end{array} \text { and } a}
$$

Goal: a quadratic approximation to the excitation Hamiltonian $H^{\text {kin }}+Q$.

Bosonization of the Interaction

Observe: if we introduce collective pair operators

$$
b_{k}^{*}:=\sum_{\substack{p \in \mathcal{B}_{F}^{c} \\
h \in \mathcal{B}_{F}}} \delta_{p-h, k} a_{p}^{*} a_{h}^{*} \quad \begin{array}{ll}
p & \text { "particle" outside the Fermi ball } \\
h & \text { "hole" inside the Fermi ball }
\end{array}
$$

then

$$
Q=\frac{1}{N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k)\left(2 b_{k}^{*} b_{k}+b_{k}^{*} b_{-k}^{*}+b_{-k} b_{k}\right)+\mathcal{O}\left(\frac{\mathcal{N}^{2}}{N}\right) .
$$

This is convenient because the b_{k}^{*} and b_{k} have approximately bosonic commutators:

$$
\left[b_{k}^{*}, b_{l}^{*}\right]=0 \quad, \quad\left[b_{l}, b_{k}^{*}\right]=\delta_{k, l} n_{k}^{2}+\mathcal{E}(k, l) .
$$

Bosonization of the Interaction

Observe: if we introduce collective pair operators

$$
b_{k}^{*}:=\sum_{\substack{p \in \mathcal{B}_{F}^{c} \\
h \in \mathcal{B}_{F}}} \delta_{p-h, k} a_{p}^{*} a_{h}^{*} \quad \begin{array}{ll}
p & \text { "particle" outside the Fermi ball } \\
h \text { "hole" inside the Fermi ball }
\end{array}
$$

then

$$
Q=\frac{1}{N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k)\left(2 b_{k}^{*} b_{k}+b_{k}^{*} b_{-k}^{*}+b_{-k} b_{k}\right)+\mathcal{O}\left(\frac{\mathcal{N}^{2}}{N}\right) .
$$

This is convenient because the b_{k}^{*} and b_{k} have approximately bosonic commutators:

$$
\left[b_{k}^{*}, b_{l}^{*}\right]=0 \quad, \quad\left[b_{l}, b_{k}^{*}\right]=\delta_{k, I} n_{k}^{2}+\mathcal{E}(k, l)
$$

But how to express $H^{\text {kin }}$ through pair operators?

Bosonization of the Kinetic Energy

Fermi ball \mathcal{B}_{F}

[Fröhlich-Götschmann-Marchetti '95]
[Kopietz et al. '95]

Localize to $M=M(N)$ patches near the Fermi surface,

$$
b_{\alpha, k}^{*}:=\frac{1}{n_{\alpha, k}} \sum_{\substack{p \in \mathcal{B}_{F}^{c} \cap B_{\alpha} \\ h \in \mathcal{B}_{F} \cap B_{\alpha}}} \delta_{p-h, k} a_{p}^{*} a_{h}^{*}
$$

with $n_{\alpha, k}$ chosen to normalize $\left\|b_{\alpha, k}^{*} \Omega\right\|=1$.

Bosonization of the Kinetic Energy

Fermi ball \mathcal{B}_{F}

[Benfatto-Gallavotti '90] [Haldane '94]
[Fröhlich-Götschmann-Marchetti '95] [Kopietz et al. '95]

Localize to $M=M(N)$ patches near the Fermi surface,

$$
b_{\alpha, k}^{*}:=\frac{1}{n_{\alpha, k}} \sum_{\substack{p \in \mathcal{B}_{F}^{c} \cap B_{\alpha} \\ h \in \mathcal{B}_{F} \cap B_{\alpha}}} \delta_{p-h, k} a_{p}^{*} a_{h}^{*}
$$

with $n_{\alpha, k}$ chosen to normalize $\left\|b_{\alpha, k}^{*} \Omega\right\|=1$.
Linearize kinetic energy around patch center ω_{α} :

$$
\left[H^{\mathrm{kin}}, b_{\alpha, k}^{*}\right] \simeq 2 \hbar\left|k \cdot \hat{\omega}_{\alpha}\right| b_{\alpha, k}^{*}
$$

We approximate
$H^{\text {kin }} \simeq \sum_{k \in \mathbb{Z}^{3}} \sum_{\alpha=1}^{M} 2 \hbar u_{\alpha}(k)^{2} b_{\alpha, k}^{*} b_{\alpha, k}, \quad u_{\alpha}(k)^{2}:=\left|k \cdot \hat{\omega}_{\alpha}\right|$.

Decomposing the Interaction over Patches

Recall

$$
Q=\frac{1}{N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k)\left(2 b_{k}^{*} b_{k}+b_{k}^{*} b_{-k}^{*}+b_{-k} b_{k}\right)
$$

Decompose

$$
b_{k}^{*}=\sum_{\alpha=1}^{M} n_{\alpha, k} b_{\alpha, k}^{*}+\text { lower order }
$$

Decomposing the Interaction over Patches

Recall

$$
Q=\frac{1}{N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k)\left(2 b_{k}^{*} b_{k}+b_{k}^{*} b_{-k}^{*}+b_{-k} b_{k}\right)
$$

Decompose

$$
b_{k}^{*}=\sum_{\alpha=1}^{M} n_{\alpha, k} b_{\alpha, k}^{*}+\text { lower order }
$$

Normalization:

$$
\begin{aligned}
n_{\alpha, k}^{2} & =\# \mathrm{p}-\mathrm{h} \text { pairs in patch } B_{\alpha} \text { with momentum } k \\
& \simeq \frac{4 \pi N^{2 / 3}}{M}\left|k \cdot \hat{\omega}_{\alpha}\right|=\frac{4 \pi N^{2 / 3}}{M} u_{\alpha}(k)^{2} .
\end{aligned}
$$

Decomposing the Interaction over Patches

Recall

$$
Q=\frac{1}{N} \sum_{k \in \mathbb{Z}^{3}} \hat{V}(k)\left(2 b_{k}^{*} b_{k}+b_{k}^{*} b_{-k}^{*}+b_{-k} b_{k}\right)
$$

Decompose

$$
b_{k}^{*}=\sum_{\alpha=1}^{M} n_{\alpha, k} b_{\alpha, k}^{*}+\text { lower order }
$$

Normalization:

$$
\begin{aligned}
n_{\alpha, k}^{2} & =\# \mathrm{p} \text {-h pairs in patch } B_{\alpha} \text { with momentum } k \\
& \simeq \frac{4 \pi N^{2 / 3}}{M}\left|k \cdot \hat{\omega}_{\alpha}\right|=\frac{4 \pi N^{2 / 3}}{M} u_{\alpha}(k)^{2}
\end{aligned}
$$

Effective Quadratic Bosonic Hamiltonian

$$
H^{\mathrm{eff}}=\hbar \sum_{k \in \mathbb{Z}^{3}}\left[\sum_{\alpha} u_{\alpha}(k)^{2} b_{\alpha, k}^{*} b_{\alpha, k}+\frac{\hat{V}(k)}{M} \sum_{\alpha, \beta}\left(u_{\alpha}(k) u_{\beta}(k) b_{\alpha, k}^{*} b_{\beta, k}+u_{\alpha}(k) u_{\beta}(k) b_{\alpha, k}^{*} b_{\beta,-k}^{*}+\text { h.c. }\right)\right]
$$

Bogoliubov Diagonalization

Quadratic Hamiltonians can be diagonalized by a Bogoliubov transformation

$$
T=\exp \left(\sum_{k \in \mathbb{Z}^{3}} \sum_{\alpha, \beta=1}^{M} K(k)_{\alpha, \beta} b_{\alpha, k}^{*} b_{\beta,-k}^{*}-\text { h.c. }\right)
$$

Expanding into commutators we find

$$
T^{*} b_{\alpha, k} T \simeq \sum_{\beta=1}^{M} \cosh (K(k))_{\alpha, \beta} b_{\beta, k}+\sum_{\beta=1}^{M} \sinh (K(k))_{\alpha, \beta} b_{\beta,-k}^{*}
$$

and choose the $M \times M$-matrix $K(k)$ to make $b^{*} b^{*}$ - and $b b$-terms vanish from $H^{\text {eff. }}$

$$
T^{*} H^{\mathrm{eff}} T \simeq E_{N}^{\mathrm{RPA}}+\hbar \sum_{k \in \mathbb{Z}^{3}} \sum_{\alpha, \beta=1}^{M} E(k)_{\alpha, \beta} b_{\alpha, k}^{*} b_{\beta, k}
$$

In particular, the ground state of $H^{\text {eff }}$ is $\xi_{\mathrm{gs}} \simeq T \Omega$, and therefore the ground state of H_{N} is approximately $R T \Omega$. We add bosonic excitations and follow their evolution!

Effective Bosonic Evolution

Note that this is an (approximately) bosonic second quantization:

$$
\begin{aligned}
T^{*} H^{\mathrm{eff}} T & \simeq E_{N}^{\mathrm{RPA}}+\hbar \sum_{k \in \mathbb{Z}^{3}} \sum_{\alpha, \beta=1}^{M} E(k)_{\alpha, \beta} b_{\alpha, k}^{*} b_{\beta, k} \\
& \simeq E_{N}^{\mathrm{RPA}}+\mathrm{d} \Gamma_{\text {bosonic }}(\underbrace{\hbar \bigoplus_{k \in \mathbb{Z}^{3}} E(k)}_{=: H_{\mathrm{B}}})
\end{aligned}
$$

Consider a one-boson wave function

$$
\eta \in \mathfrak{h}_{\mathrm{B}}:=\bigoplus_{k \in \mathbb{Z}^{3}} \mathbb{C}^{M}
$$

Then

$$
\eta_{t}:=e^{-i H_{B} \tau / \hbar} \eta_{0}
$$

is the time-evolution in the (first quantized) one-boson space.

For $\eta \in \mathfrak{h}_{\mathrm{B}}$ let

$$
b^{*}(\eta):=\sum_{k \in \mathbb{Z}^{3}} \sum_{\alpha=1}^{M} b_{\alpha, k}^{*} \eta(k)_{\alpha} .
$$

Theorem (B-Nam-Porta-Schlein-Seiringer '21)

Assume that $\hat{V}(p)$ is compactly supported and non-negative. Let

$$
\xi_{0}:=\frac{1}{Z_{m}} b^{*}\left(\eta_{1}\right) \cdots b^{*}\left(\eta_{m}\right) \Omega, \quad \xi_{t}:=\frac{1}{Z_{m}} b^{*}\left(\eta_{1, \tau}\right) \cdots b^{*}\left(\eta_{m, \tau}\right) \Omega
$$

Then

$$
\left\|e^{-i H_{N} \tau / \hbar} R T \xi_{0}-e^{-i\left(E_{N}^{\mathrm{Pw}}+E_{N}^{\mathrm{RPA}}\right) \tau / \hbar} R T \xi_{\tau}\right\| \leq C_{m, V} \hbar^{1 / 15}|\tau|
$$

If $H_{\mathrm{B}} \eta_{i}=e_{i} \eta_{i}\left(e_{i} \in \mathbb{R}\right)$ then we have constructed an approximate eigenstate of the many-body Hamiltonian, evolving up to times $|\tau| \ll N^{1 / 45}$ just with a phase:

$$
e^{-i H_{N} \tau / \hbar} R T \xi_{0} \simeq e^{-i\left(E_{N}^{\mathrm{pW}}+E_{N}^{\mathrm{RPA}}+\sum_{j=1}^{m} e_{j}\right) \tau / \hbar} R T \xi_{0}
$$

Thank you!

