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Many–Body Schrödinger Equation



Quantum System of N Fermions

Hamilton operator of N identical spinless particles:

HN :=
N∑

i=1
(−∆i ) + λ

∑
1≤i<j≤N

V (xi − xj) with V : R3 → R .

Acts on the L2–subspace of antisymmetric wave functions of 3N variables

ψ(xσ(1), xσ(2), . . . , xσ(N)) = sgn(σ)ψ(x1, x2, . . . , xN) ∀σ ∈ SN .

For reasonable potentials, the Hamiltonian is self–adjoint (e. g., Kato–Rellich theorem).

Time evolution is described by Schrödinger equation:

i∂tψt = HNψt

initial data ψ0

}
⇔ ψt = e−iHN tψ0 .
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Explicit Solutions?

• Analytical solutions up to N = 2 (in center–of–mass coordinates), or N = 3 (some
examples with high symmetry)

• Numerical methods (quantum Monte Carlo) are limited by exponential growth of
Hilbert space dimension: “curse of dimension”

• In macroscopic samples (a piece of metal, a doped semiconductor) N > 1023

We need approximations!

• There is no one-size-fits-all approximation!
Range of phenomena described by the Schrödinger equation is far too large:
superconductors, neutron stars, electric vehicles,. . .

• Specify particular physical situations — mathematical idealization: scaling limits.
• Specify quantities to be approximated: which observables, which excitations, . . . ?
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Fermionic Mean–Field Scaling



Mean–Field Regime = High Density & Weak Interaction

• Gas at high density with weak interaction.
In the limit, every particle moves in a continuous cloud generated by all the other
particles, “moves in mean field”.

• High density: N fermions (at least initially) in external trapping potential or
fixed–size torus and N → +∞

• “Weak” interaction? Minimize 〈ψ,∑N
j=1(−∆j)ψ〉! Antisymm. tensor product

ψ = 1
N!

∑
σ∈SN

sgn(σ)ϕσ(1) ⊗ · · · ⊗ ϕσ(N)

of eigenfunctions of the Laplacian ϕj(x) := (2π)−3/2eikj ·x , kj ∈ Z3:∑N
j=1
|kj |2 =

∑
|k|≤cN1/3 |k|

2 ∼ N5/3 c. f. 〈ψ, λ
∑

1≤i<j≤N
V (xi−xj)ψ〉 ∼ λN2 .

fermionic mean–field scaling: λ = N−1/3 (bosons: λ = N−1)
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Semiclassical Time Scale

• Velocity ∼ highest momenta k ∼ N1/3.
A particle traverses the entire torus in a time of order N−1/3.
No significant loss in considering only times t = N−1/3τ , where τ ∼ 1:

iN1/3∂τψτ =

 N∑
j=1
−∆xj + 1

N1/3

∑
1≤i<j≤N

V (xi − xj)

ψτ .

• Trivial step: define effective Planck constant ~ := N−1/3 and multiply by ~2

Mean-field scaling is naturally coupled to a semiclassical scaling:

i~∂τψτ =

 N∑
j=1
−~2∆xj + 1

N
∑

1≤i<j≤N
V (xi − xj)

ψτ with ~ = N−1/3 .

Goal: Approximate ψτ by simpler initial value problems.
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Effective Theories

• Vlasov equation:
theory on classical phase space, no quantum effects retained, “semiclassical”

• Hartree–Fock equation:
quantum, only the unavoidable entanglement due to antisymmetry of fermionic
wave functions (kinematic entanglement)

• Random Phase Approximation:
quantum, entanglement of particle–hole pairs (dynamical entanglement, to
leading order)

Caution: {Vlasov,HF,RPA} is not an ordered set (not transitive, not antisymmetric):

• For practical purposes simpler equations sometimes work better!
• Do we enlarge or restrict the set of permitted initial data?
• More effects neglected — more mathematical work to estimate them?
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Vlasov Equation



Classical Approximation

• In classical mechanics a system is described by a particle density on phase phase:

f : R3 × R3 → [0,∞) ,
∫

f (x , p)dxdp = 1 .

• Classical mean–field evolution for fτ : Vlasov equation

∂fτ
∂τ

+ 2p · ∇x fτ = −F (fτ ) · ∇pfτ

where
F (fτ ) := −∇(V ∗ ρfτ ) , ρfτ (x) :=

∫
fτ (x , p)dp .
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From Quantum to Classical

• From quantum mechanics to phase space: For ψ ∈ L2(R3)⊗N , define the
one–particle reduced density matrix

γψ := N tr2,...,N |ψ〉〈ψ|

and then the Wigner transform

Wψ(x , p) := 1
(2π)3

∫
e−ip·y/~ γψ

(
x + y

2 , x −
y
2

)
dy .

The Wigner transform is invertable (by Weyl quantization).

• Narnhofer–Sewell ’81: Wψτ converges to solution of Vlasov equation for analytic V.
• Spohn ’81: Generalization to twice differentiable V .
• Recent results, in particular concerning singular V such as Coulomb potential:

Saffirio, Thursday 11:30
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Hartree–Fock Approximation



Hartree-Fock Approximation

Restrict QM to antisymmetrized tensor products ψ = A(ϕ1 ⊗ . . .⊗ ϕN) (no other
linear combinations permitted) and optimize the choice of the ϕj ∈ L2(R3).

• Approximate time evolution

e−iHNτ/~A(ϕ1,0⊗ . . .⊗ϕN,0) ' A(ϕ1,τ ⊗ . . .⊗ϕN,τ )

• Hartree-Fock equations, for i = 1, 2, . . .N:

i~∂τϕi ,τ = −~2∆ϕi ,τ + 1
N

N∑
j=1

(
V ∗ |ϕj,τ |2

)
ϕi ,τ

− 1
N

N∑
j=1

(
V ∗ (ϕi ,τϕj,τ )

)
ϕj,τ

Dirac–Frenkel principle:

SubmanifoldM⊂ H .
1
i HNψτ

TψτM

Pτ 1
i Hψτ

ψτ

M

Pτ = orthog. projection on TψτM

[Lubich ’08, B–Sok–Solovej ’18]
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Rigorous Error Estimates

• Erdős–Elgart–Schlein–Yau ’04: Convergence from Schrödinger equation to
Hartree–Fock equation for short times, τ < τ0. Analytic V .

• Hartree–Fock equation for scalings with weaker interaction or shorter time scale:
• Bardos–Golse–Gottlieb–Mauser ’03
• Fröhlich–Knowles ’11
• Pickl–Petrat ’14
• Bach–Breteaux–Petrat–Pickl–Tzaneteas ’16.

• B–Porta–Schlein ’14: V ∈ L1(R3) with
∫
|V̂ (p)|(1 + |p|)2dp <∞, arbitrary τ .

• generalizations: mixed states B–Jakšić–Porta–Saffirio–Schlein ’16,
singular interactions: Chong, Lafleche, Leopold, Saffirio
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One–Particle Density Matrix

• For ψ ∈ L2(R3)⊗N , the one–particle density matrix is (as before)

γψ := N tr2,...,N |ψ〉〈ψ| .

• If ψ is an antisymmetrized tensor product, γψ is a projection in L2(R3):

ψ = A(ϕ1 ⊗ ϕ2 ⊗ · · · ⊗ ϕN) ⇔ γψ =
N∑

j=1
|ϕj〉〈ϕj | .

• Hartree–Fock equations:

i~∂tγ
HF
t =

[
−~2∆ + V ∗ ρt − Xt , γ

HF
t

]
,

with the multiplication operator V ∗ ρt(x) = N−1
∫
V (x − y)γHFt (y ; y)dy ,

and Xt the operator with integral kernel N−1V (x − y)γHFt (x ; y).
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Theorem (B–Porta–Schlein ’14)

Let V ∈ L1(R3) with
∫
|V̂ (p)|(1 + |p|)2dp <∞.

Let {ϕj}∞j=1 be an orthonormal basis in L2(R3).
Let ψ0 = A(ϕ1 ⊗ . . .⊗ ϕN). Assume semiclassical commutators bounds

‖[xi , γψ0 ]‖tr ≤ CN~ , ‖i~∂i , γψ0 ]‖tr ≤ CN~ .

Let
• γψt : one–particle reduced density matrix of the solution of the Schrödinger

equation with initial data ψ0,
• γHF

t : solution of HF equation with initial data γψ0 .

Then

‖γψt − γHF
t ‖tr ≤ CN1/6ecec|t| (compare tr γψt = N = tr γHF

t ) .
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Construction of Initial Data

We require an ~–gain in commutators with position and momentum:

‖[xi , γψ0 ]‖tr ≤ CN~ , ‖i~∂i , γψ0 ]‖tr ≤ CN~ .

Verified for non–interacting fermions in different situations:

• translation invariant state: plane waves on torus (but that is stationary under the
HF evolution even when the interaction is switched on)

• in general trapping potentials [Fournais–Mikkelsen ’19]: by semiclassical analysis
• in an (anisotropic) harmonic trap: by explicit computation

Experimentally: quantum quench, prepare non–interacting fermions in ground state,
than switch on the interaction by a Feshbach resonance.
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Proof of the [BPS14] Theorem



Second Quantization

• Fermionic Fock space

F = C⊕
⊕
n≥1
A L2(R3n) , ψ = (ψ(0), ψ(1), . . . , ψ(N), . . .) ∈ F

• Canonical anticommutation relations

{ax , a∗y} = δ(x − y) , {ax , ay} = {a∗y , a∗x} = 0.

• On (0, . . . , 0, ψ(N), 0, . . .) ∈ F we have H = HN by defining

H := ~2
∫

dx ∇xa∗x∇xax + 1
2N

∫
dxdy V (x−y)a∗xa∗yayax

• Vacuum Ω = (1, 0, 0, 0, . . .) ∈ F
• Number operator

N =
∫

a∗xax dx
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Particle–Hole Transformation (remember for the RPA section!)

Use a unitary R : F → F to represent Fock space as excitations (particles or holes)
over the Hartree–Fock state, instead of particles over vacuum.

RΩ := A(ϕ1 ⊗ . . .⊗ ϕN) ∈ F

Ra∗(ϕi )R∗ :=
{

a∗(ϕi ) for i > N (creates particle)
a(ϕi ) for i ≤ N (creates hole).

• This is a Bogoliubov transformation:

Ra∗xR∗ = a∗(ux ) + a(vx ),

with v = ∑N
j=1|ϕj〉〈ϕj |, u = 1− v (up to conjugations), and vx (y) := v(y , x).

• Analogously, for ϕj,τ solving the HF equations, introduce Rτ such that

RτΩ = A(ϕ1,τ ⊗ . . .⊗ ϕN,τ ) .
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‖γψτ − γHF
τ ‖tr ≤ Number of Excitations

• Number of excitations w. r. t. the HF-evolved state:

N exc
τ := RτNR∗τ .

• A short calculation shows
‖γψτ − γHFτ ‖tr ≤ CN1/2〈e−iHτ/~R0Ω,N exc

τ e−iHτ/~R0Ω〉
= CN1/2〈U(τ)Ω,NU(τ)Ω〉

with U(τ) := R∗τ e−iHτ/~R0.
• To control the trace norm difference, it is enough to show that

〈U(τ)Ω,NU(τ)Ω〉 = O(1) .

• By Grönwall’s lemma, it is sufficient to prove
d
dτ 〈U(τ)Ω,NU(τ)Ω〉 ≤ Ct〈U(τ)Ω,NU(τ)Ω〉.
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Cancellations

• With the generator defined by i~∂τU(τ) = LN(τ)U(τ) we have to show

|i~ d
dτ 〈U(τ)Ω,NU(τ)Ω〉| = |〈U(τ)Ω, [LN(τ),N ]U(τ)Ω〉| ≤ ~Cτ 〈U(τ)Ω,NU(τ)Ω〉.

• U(τ) depends on R∗τ which depends on the HF equation;
using the HF equation the biggest terms of LN(τ) cancel!

• Remaining:

~
d
dτ 〈U(τ)Ω,NU(τ)Ω〉

' 1
N

∫
dxdy V (x−y)〈U(τ)Ω, a∗(uτ,y )a(uτ,y )a(vτ,x )a(uτ,x )U(τ)Ω〉 .

• Easy bound O(N ), but need O(~N ).
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Using the Semiclassical Commutators

• Have to extract a factor ~:
1
N

∫
dxdy V (x−y)〈U(τ)Ω, a∗(uτ,y )a(uτ,y )a(vτ,x )a(uτ,x )U(τ)Ω〉.

Recall: v = v2, u = 1− v : ∫
dx vτ,xuτ,x = 0.

• But there is V (x−y).

; Commute uτ and V .

• The variables x and y can be treated separately using the Fourier decomposition
V (x−y) = ∑

p∈Z3 V̂ (p) eip·xe−ip·y :∫
dx vτ,xeip·xuτ,x =

∫
dx vτ,x [eip·x , uτ ](·, x) =

∫
dx vτ,x [eip·x , γHFτ ](·, x)︸ ︷︷ ︸

' CN~

.
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Random Phase Approximation



Back to the Particle–Hole Transformation

Our approach to RPA: start from the Fermi ball of the Hamiltonian on the torus.
The Fermi ball is stationary under HF evolution. Consider its excitations.

In momentum representation the particle–hole transformation acts as

R a∗k R∗ :=
{

a∗k |k| > ( 3
4π )1/3N1/3

ak |k| ≤ ( 3
4π )1/3N1/3 .

Expand R∗HNR and normal–order

R∗HNR = Epw
N + ~2

∑
p∈Bc

F

p2a∗pap − ~2
∑

h∈BF

h2a∗hah

︸ ︷︷ ︸
=: Hkin

+
∑

h∈BF

X

︸ ︷︷ ︸
exchange term,

negligible

+
∑

h∈BF

Q

︸ ︷︷ ︸
quartic in

operators a∗ and a

Goal: a quadratic approximation to the excitation Hamiltonian Hkin + Q.

(Quadratic Hamiltonians can be diagonalized by Bogoliubov transformations.) 18



Bosonization of the Interaction

Observe: if we introduce collective pair operators

b∗k :=
∑

p∈Bc
F

h∈BF

δp−h,ka∗pa∗h
p “particle” outside the Fermi ball
h “hole” inside the Fermi ball

then
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗kbk + b∗kb∗−k + b−kbk

)
+O

(N 2

N
)
.

This is convenient because the b∗k and bk have approximately bosonic commutators:

[b∗k , b∗l ] = 0 , [bl , b∗k ] = δk,ln2k + E(k, l) .

But how to express Hkin through pair operators?
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Bosonization of the Kinetic Energy

Fermi ball BF

ωα

[Benfatto–Gallavotti ’90]
[Haldane ’94]

[Fröhlich–Götschmann–Marchetti ’95]

[Kopietz et al. ’95]

Localize to M = M(N) patches near the Fermi surface,

b∗α,k := 1
nα,k

∑
p∈Bc

F∩Bα
h∈BF∩Bα

δp−h,ka∗pa∗h

with nα,k chosen to normalize ‖b∗α,kΩ‖ = 1.

Linearize kinetic energy around patch center ωα:

[Hkin, b∗α,k ] ' 2~|k · ω̂α|b∗α,k

We approximate

Hkin '
∑

k∈Z3

M∑
α=1

2~uα(k)2b∗α,kbα,k , uα(k)2 := |k·ω̂α| .
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Decomposing the Interaction over Patches

Recall
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗kbk + b∗kb∗−k + b−kbk

)
Decompose

b∗k =
M∑
α=1

nα,kb∗α,k + lower order .

Normalization:
n2α,k = #p-h pairs in patch Bα with momentum k

' 4πN2/3

M |k · ω̂α| = 4πN2/3

M uα(k)2 .

kωα

Effective Quadratic Bosonic Hamiltonian

Heff= ~
∑

k∈Z3

[∑
α

uα(k)2b∗α,kbα,k+ V̂ (k)
M

∑
α,β

(
uα(k)uβ(k)b∗α,kbβ,k+uα(k)uβ(k)b∗α,kb∗β,−k+h.c.

)]
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Bogoliubov Diagonalization

Quadratic Hamiltonians can be diagonalized by a Bogoliubov transformation

T = exp
( ∑

k∈Z3

M∑
α,β=1

K (k)α,βb∗α,kb∗β,−k − h.c.
)
.

Expanding into commutators we find

T ∗bα,kT '
M∑
β=1

cosh(K (k))α,βbβ,k +
M∑
β=1

sinh(K (k))α,βb∗β,−k

and choose the M ×M–matrix K (k) to make b∗b∗– and bb–terms vanish from Heff:

T ∗HeffT ' ERPA
N + ~

∑
k∈Z3

M∑
α,β=1

E (k)α,βb∗α,kbβ,k .

In particular, the ground state of Heff is ξgs ' TΩ, and therefore the ground state of
HN is approximately RTΩ. We add bosonic excitations and follow their evolution!
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Effective Bosonic Evolution

Note that this is an (approximately) bosonic second quantization:

T ∗HeffT ' ERPA
N + ~

∑
k∈Z3

M∑
α,β=1

E (k)α,βb∗α,kbβ,k

' ERPA
N + dΓbosonic

(
~
⊕
k∈Z3

E (k)
︸ ︷︷ ︸

=: HB

)
.

Consider a one–boson wave function

η ∈ hB :=
⊕
k∈Z3

CM .

Then
ηt := e−iHBτ/~η0

is the time–evolution in the (first quantized) one–boson space.
23



For η ∈ hB let

b∗(η) :=
∑

k∈Z3

M∑
α=1

b∗α,kη(k)α .

Theorem (B–Nam–Porta–Schlein–Seiringer ’21)

Assume that V̂ (p) is compactly supported and non–negative. Let

ξ0 := 1
Zm

b∗(η1) · · · b∗(ηm)Ω , ξt := 1
Zm

b∗(η1,τ ) · · · b∗(ηm,τ )Ω .

Then
‖e−iHNτ/~RT ξ0 − e−i(Epw

N +ERPA
N )τ/~RT ξτ‖ ≤ Cm,V~1/15|τ | .

If HBηi = eiηi (ei ∈ R) then we have constructed an approximate eigenstate of the
many–body Hamiltonian, evolving up to times |τ | � N1/45 just with a phase:

e−iHNτ/~RT ξ0 ' e−i
(

Epw
N +ERPA

N +
∑m

j=1 ej
)
τ/~RT ξ0 .
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Thank you!
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