Effective Dynamics of Interacting Fermions

Niels Benedikter

2014–2022 joint work with Vojkan Jakšić, Phan Thành Nam, Marcello Porta, Chiara Saffirio, Benjamin Schlein, Robert Seiringer, Jan Philip Solovej, and Jérémy Sok

Università degli Studi di Milano

Many–Body Schrödinger Equation

Quantum System of *N* Fermions

Hamilton operator of N identical spinless particles:

$$H_N := \sum_{i=1}^N (-\Delta_i) + \lambda \sum_{1 \le i < j \le N} V(x_i - x_j) \quad \text{with } V : \mathbb{R}^3 \to \mathbb{R} \;.$$

Acts on the L^2 -subspace of antisymmetric wave functions of 3N variables

$$\psi(\mathsf{x}_{\sigma(1)},\mathsf{x}_{\sigma(2)},\ldots,\mathsf{x}_{\sigma(N)}) = \operatorname{sgn}(\sigma)\psi(\mathsf{x}_1,\mathsf{x}_2,\ldots,\mathsf{x}_N) \qquad \forall \sigma \in S_N \ .$$

For reasonable potentials, the Hamiltonian is self-adjoint (e.g., Kato-Rellich theorem). Time evolution is described by Schrödinger equation:

$$\left. i \partial_t \psi_t = H_N \psi_t \\ ext{initial data } \psi_0 \end{array} \right\} \quad \Leftrightarrow \quad \psi_t = e^{-iH_N t} \psi_0$$

Explicit Solutions?

- Analytical solutions up to N = 2 (in center-of-mass coordinates), or N = 3 (some examples with high symmetry)
- Numerical methods (quantum Monte Carlo) are limited by exponential growth of Hilbert space dimension: "curse of dimension"

Explicit Solutions?

- Analytical solutions up to N = 2 (in center-of-mass coordinates), or N = 3 (some examples with high symmetry)
- Numerical methods (quantum Monte Carlo) are limited by exponential growth of Hilbert space dimension: "curse of dimension"
- In macroscopic samples (a piece of metal, a doped semiconductor) $N>10^{23}$

We need approximations!

Explicit Solutions?

- Analytical solutions up to N = 2 (in center-of-mass coordinates), or N = 3 (some examples with high symmetry)
- Numerical methods (quantum Monte Carlo) are limited by exponential growth of Hilbert space dimension: "curse of dimension"
- In macroscopic samples (a piece of metal, a doped semiconductor) $N > 10^{23}$

We need approximations!

- There is no one-size-fits-all approximation! Range of phenomena described by the Schrödinger equation is far too large: superconductors, neutron stars, electric vehicles,...
 - Specify particular physical situations mathematical idealization: scaling limits.
 - Specify quantities to be approximated: which observables, which excitations, ...?

Fermionic Mean–Field Scaling

Mean–Field Regime = High Density & Weak Interaction

• Gas at high density with weak interaction.

In the limit, every particle moves in a continuous cloud generated by all the other particles, "moves in mean field".

Mean–Field Regime = High Density & Weak Interaction

Gas at high density with weak interaction.

In the limit, every particle moves in a continuous cloud generated by all the other particles, "moves in mean field".

• High density: N fermions (at least initially) in external trapping potential or fixed-size torus and $N \to +\infty$

Mean–Field Regime = High Density & Weak Interaction

Gas at high density with weak interaction.

.

In the limit, every particle moves in a continuous cloud generated by all the other particles, "moves in mean field".

- High density: N fermions (at least initially) in external trapping potential or fixed-size torus and $N \to +\infty$
- "Weak" interaction? Minimize $\langle \psi, \sum_{j=1}^{N} (-\Delta_j)\psi \rangle$! Antisymm. tensor product

$$\psi = \frac{1}{N!} \sum_{\sigma \in S_N} \operatorname{sgn}(\sigma) \varphi_{\sigma(1)} \otimes \cdots \otimes \varphi_{\sigma(N)}$$

of eigenfunctions of the Laplacian $arphi_j(x):=(2\pi)^{-3/2}e^{ik_j\cdot x}$, $k_j\in\mathbb{Z}^3$:

$$\sum_{j=1}^{N} |k_j|^2 = \sum_{|k| \le cN^{1/3}} |k|^2 \sim N^{5/3} \qquad \text{c. f.} \qquad \langle \psi, \lambda \sum_{1 \le i < j \le N} V(x_i - x_j) \psi \rangle \sim \lambda N^2 .$$

fermionic mean-field scaling: $\lambda = N^{-1/3}$ (bosons: $\lambda = N^{-1}$)

Semiclassical Time Scale

• Velocity \sim highest momenta $k \sim N^{1/3}$.

A particle traverses the entire torus in a time of order $N^{-1/3}$. No significant loss in considering only times $t = N^{-1/3}\tau$, where $\tau \sim 1$:

$$i N^{1/3} \partial_{\tau} \psi_{\tau} = \left[\sum_{j=1}^{N} -\Delta_{x_j} + \frac{1}{N^{1/3}} \sum_{1 \leq i < j \leq N} V(x_i - x_j) \right] \psi_{\tau} \; .$$

Semiclassical Time Scale

• Velocity \sim highest momenta $k \sim N^{1/3}$.

A particle traverses the entire torus in a time of order $N^{-1/3}$. No significant loss in considering only times $t = N^{-1/3}\tau$, where $\tau \sim 1$:

$$i N^{1/3} \partial_{\tau} \psi_{\tau} = \left[\sum_{j=1}^{N} -\Delta_{x_j} + \frac{1}{N^{1/3}} \sum_{1 \leq i < j \leq N} V(x_i - x_j) \right] \psi_{\tau} \; .$$

• Trivial step: define effective Planck constant $\hbar := N^{-1/3}$ and multiply by \hbar^2

Mean-field scaling is naturally coupled to a semiclassical scaling:

$$i\hbar\partial_{\tau}\psi_{\tau} = \left[\sum_{j=1}^{N} -\hbar^{2}\Delta_{x_{j}} + \frac{1}{N}\sum_{1\leq i< j\leq N}V(x_{i}-x_{j})\right]\psi_{\tau} \quad \text{with } \hbar = N^{-1/3} .$$

Goal: Approximate ψ_{τ} by simpler initial value problems.

Vlasov equation:

theory on classical phase space, no quantum effects retained, "semiclassical"

Hartree–Fock equation:

quantum, only the unavoidable entanglement due to antisymmetry of fermionic wave functions (kinematic entanglement)

Random Phase Approximation:

quantum, entanglement of particle-hole pairs (dynamical entanglement, to leading order)

Caution: {Vlasov, HF, RPA} is not an ordered set (not transitive, not antisymmetric):

- For practical purposes simpler equations sometimes work better!
- Do we enlarge or restrict the set of permitted initial data?
- More effects neglected more mathematical work to estimate them?

Vlasov Equation

• In classical mechanics a system is described by a particle density on phase phase:

$$f: \mathbb{R}^3 imes \mathbb{R}^3 o [0,\infty) , \qquad \int f(x,p) dx dp = 1 .$$

• Classical mean-field evolution for f_{τ} : Vlasov equation

$$\frac{\partial f_{\tau}}{\partial \tau} + 2p \cdot \nabla_{x} f_{\tau} = -F(f_{\tau}) \cdot \nabla_{p} f_{\tau}$$

where

$$F(f_{\tau}) := -\nabla(V *
ho_{f_{\tau}}), \quad
ho_{f_{\tau}}(x) := \int f_{\tau}(x, p) \mathrm{d}p.$$

From Quantum to Classical

From quantum mechanics to phase space: For ψ ∈ L²(ℝ³)^{⊗N}, define the one–particle reduced density matrix

$$\gamma_{\psi} := \mathit{N} \operatorname{tr}_{2,...,\mathit{N}} |\psi
angle \langle \psi |$$

and then the Wigner transform

$$W_\psi(x,p):=rac{1}{(2\pi)^3}\int e^{-ip\cdot y/\hbar}\;\gamma_\psi\left(x+rac{y}{2},x-rac{y}{2}
ight)\mathsf{d} y\;.$$

The Wigner transform is invertable (by Weyl quantization).

From Quantum to Classical

From quantum mechanics to phase space: For ψ ∈ L²(ℝ³)^{⊗N}, define the one–particle reduced density matrix

$$\gamma_{\psi} := \mathit{N} \operatorname{tr}_{2,...,\mathit{N}} |\psi
angle \langle \psi |$$

and then the Wigner transform

$$W_\psi(x,p):=rac{1}{(2\pi)^3}\int e^{-ip\cdot y/\hbar}\;\gamma_\psi\left(x+rac{y}{2},x-rac{y}{2}
ight)\mathsf{d} y\;.$$

The Wigner transform is invertable (by Weyl quantization).

- Narnhofer–Sewell '81: $W_{\psi_{\tau}}$ converges to solution of Vlasov equation for analytic V.
- Spohn '81: Generalization to twice differentiable V.
- Recent results, in particular concerning singular V such as Coulomb potential:
 Saffirio, Thursday 11:30

Hartree–Fock Approximation

Restrict QM to antisymmetrized tensor products $\psi = \mathcal{A}(\varphi_1 \otimes \ldots \otimes \varphi_N)$ (no other linear combinations permitted) and optimize the choice of the $\varphi_j \in L^2(\mathbb{R}^3)$.

Approximate time evolution

$$e^{-iH_N au/\hbar}\mathcal{A}(\varphi_{1,0}\otimes\ldots\otimes\varphi_{N,0})\simeq\mathcal{A}(\varphi_{1, au}\otimes\ldots\otimes\varphi_{N, au})$$

$$egin{aligned} &i\hbar\partial_{ au}arphi_{i, au} = -\hbar^2\Deltaarphi_{i, au} + rac{1}{N}\sum_{j=1}^N \left(V*ertarphi_{j, au}ert^2
ight)arphi_{i, au} \ &-rac{1}{N}\sum_{j=1}^N \left(V*ertarphi_{i, au}\overline{arphi_{j, au}}
ight) \!
ight)arphi_{j, au} \end{aligned}$$

Rigorous Error Estimates

- Erdős–Elgart–Schlein–Yau '04: Convergence from Schrödinger equation to Hartree–Fock equation for short times, τ < τ₀. Analytic V.
- Hartree–Fock equation for scalings with weaker interaction or shorter time scale:
 - Bardos–Golse–Gottlieb–Mauser '03
 - Fröhlich–Knowles '11
 - Pickl–Petrat '14
 - Bach–Breteaux–Petrat–Pickl–Tzaneteas '16.
- *B–Porta–Schlein* '14: $V \in L^1(\mathbb{R}^3)$ with $\int |\hat{V}(p)|(1+|p|)^2 dp < \infty$, arbitrary τ .
- generalizations: mixed states B–Jakšić–Porta–Saffirio–Schlein '16, singular interactions: Chong, Lafleche, Leopold, Saffirio

One–Particle Density Matrix

• For $\psi \in L^2(\mathbb{R}^3)^{\otimes N}$, the one-particle density matrix is (as before)

 $\gamma_{\psi} := N \operatorname{tr}_{2,...,N} |\psi\rangle \langle \psi| .$

• If ψ is an antisymmetrized tensor product, γ_{ψ} is a projection in $L^2(\mathbb{R}^3)$:

$$\psi = \mathcal{A}(\varphi_1 \otimes \varphi_2 \otimes \cdots \otimes \varphi_N) \quad \Leftrightarrow \quad \gamma_\psi = \sum_{j=1}^N |\varphi_j\rangle \langle \varphi_j| \; .$$

Hartree–Fock equations:

$$i\hbar\partial_t\gamma_t^{\mathsf{HF}} = \left[-\hbar^2\Delta + V*\rho_t - X_t \ , \ \gamma_t^{\mathsf{HF}}\right],$$

with the multiplication operator $V * \rho_t(x) = N^{-1} \int V(x-y)\gamma_t^{\mathsf{HF}}(y;y) dy$, and X_t the operator with integral kernel $N^{-1}V(x-y)\gamma_t^{\mathsf{HF}}(x;y)$.

Theorem (B-Porta-Schlein '14)

Let $V \in L^1(\mathbb{R}^3)$ with $\int |\hat{V}(p)|(1+|p|)^2 dp < \infty$.

Let $\{\varphi_j\}_{j=1}^{\infty}$ be an orthonormal basis in $L^2(\mathbb{R}^3)$. Let $\psi_0 = \mathcal{A}(\varphi_1 \otimes \ldots \otimes \varphi_N)$. Assume semiclassical commutators bounds

 $\|[x_i, \gamma_{\psi_0}]\|_{\mathrm{tr}} \leq CN\hbar \;, \qquad \|i\hbar\partial_i, \gamma_{\psi_0}]\|_{\mathrm{tr}} \leq CN\hbar \;.$

Let

- γ_{ψ_t} : one-particle reduced density matrix of the solution of the Schrödinger equation with initial data ψ_0 ,
- γ_t^{HF} : solution of HF equation with initial data γ_{ψ_0} .

Then

$$\|\gamma_{\psi_t} - \gamma_t^{HF}\|_{\mathrm{tr}} \le C N^{1/6} e^{ce^{c|t|}} \qquad (\text{compare tr} \gamma_{\psi_t} = N = \mathrm{tr} \gamma_t^{HF}) \ .$$

We require an $\hbar\text{-}\text{gain}$ in commutators with position and momentum:

 $\|[x_i, \gamma_{\psi_0}]\|_{\mathsf{tr}} \le CN\hbar , \qquad \|i\hbar\partial_i, \gamma_{\psi_0}]\|_{\mathsf{tr}} \le CN\hbar .$

Verified for non-interacting fermions in different situations:

- translation invariant state: plane waves on torus (but that is stationary under the HF evolution even when the interaction is switched on)
- in general trapping potentials [Fournais–Mikkelsen '19]: by semiclassical analysis
- in an (anisotropic) harmonic trap: by explicit computation

Experimentally: quantum quench, prepare non-interacting fermions in ground state, than switch on the interaction by a Feshbach resonance.

Proof of the [BPS14] Theorem

Second Quantization

Fermionic Fock space

$$\mathcal{F} = \mathbb{C} \oplus \bigoplus_{n \ge 1} \mathcal{A} L^2(\mathbb{R}^{3n}), \qquad \psi = (\psi^{(0)}, \psi^{(1)}, \dots, \psi^{(N)}, \dots) \in \mathcal{F}$$

- Canonical anticommutation relations

$$\{a_x, a_y^*\} = \delta(x - y), \quad \{a_x, a_y\} = \{a_y^*, a_x^*\} = 0.$$

• On
$$(0, \dots, 0, \psi^{(N)}, 0, \dots) \in \mathcal{F}$$
 we have $\mathcal{H} = H_N$ by defining
$$\mathcal{H} := \hbar^2 \int dx \, \nabla_x a_x^* \nabla_x a_x + \frac{1}{2N} \int dx dy \, V(x-y) a_x^* a_y^* a_y a_x$$

- Vacuum $\Omega = (1,0,0,0,\ldots) \in \mathcal{F}$
- Number operator

$$\mathcal{N} = \int a_x^* a_x \, \mathrm{d}x$$

Particle–Hole Transformation (remember for the RPA section!)

Use a unitary $R : \mathcal{F} \to \mathcal{F}$ to represent Fock space as excitations (particles or holes) over the Hartree–Fock state, instead of particles over vacuum.

$$R\Omega := \mathcal{A}(\varphi_1 \otimes \ldots \otimes \varphi_N) \in \mathcal{F}$$

 $Ra^*(\varphi_i)R^* := \begin{cases} a^*(\varphi_i) & \text{for } i > N \ a(\varphi_i) & \text{for } i \leq N \end{cases}$ (creates particle).

Particle–Hole Transformation (remember for the RPA section!)

Use a unitary $R : \mathcal{F} \to \mathcal{F}$ to represent Fock space as excitations (particles or holes) over the Hartree–Fock state, instead of particles over vacuum.

$$R\Omega := \mathcal{A}(\varphi_1 \otimes \ldots \otimes \varphi_N) \in \mathcal{F}$$

 $Ra^*(\varphi_i)R^* := \begin{cases} a^*(\varphi_i) & \text{for } i > N \ a(\varphi_i) & \text{for } i \leq N \end{cases}$ (creates particle).

• This is a Bogoliubov transformation:

$$Ra_x^*R^* = a^*(u_x) + a(v_x),$$

with $v = \sum_{j=1}^{N} |\varphi_j\rangle \langle \varphi_j|$, $u = \mathbb{1} - v$ (up to conjugations), and $v_x(y) := v(y, x)$.

Particle–Hole Transformation (remember for the RPA section!)

Use a unitary $R : \mathcal{F} \to \mathcal{F}$ to represent Fock space as excitations (particles or holes) over the Hartree–Fock state, instead of particles over vacuum.

$$R\Omega := \mathcal{A}(\varphi_1 \otimes \ldots \otimes \varphi_N) \in \mathcal{F}$$

 $Ra^*(\varphi_i)R^* := \begin{cases} a^*(\varphi_i) & \text{for } i > N \ a(\varphi_i) & \text{for } i \leq N \end{cases}$ (creates particle).

• This is a Bogoliubov transformation:

$$Ra_x^*R^* = a^*(u_x) + a(v_x),$$

with $v = \sum_{j=1}^{N} |\varphi_j\rangle\langle\varphi_j|$, $u = \mathbb{1} - v$ (up to conjugations), and $v_x(y) := v(y, x)$.

• Analogously, for $\varphi_{i,\tau}$ solving the HF equations, introduce R_{τ} such that

$$\mathcal{R}_{ au}\Omega=\mathcal{A}(arphi_{1, au}\otimes\ldots\otimesarphi_{\mathcal{N}, au})\;.$$

14

$\| \| \gamma_{\psi_{ au}} - \gamma_{ au}^{\mathsf{HF}} \|_{\mathsf{tr}} \leq \mathsf{Number of Excitations}$

• Number of excitations w.r.t. the HF-evolved state:

$$\mathcal{N}^{\mathsf{exc}}_{ au} := R_{ au} \mathcal{N} R^*_{ au}$$

$\| \| \gamma_{\psi_{ au}} - \gamma_{ au}^{\mathsf{HF}} \|_{\mathsf{tr}} \leq \mathsf{Number of Excitations}$

• Number of excitations w.r.t. the HF-evolved state:

$$\mathcal{N}^{\mathsf{exc}}_{\tau} := R_{\tau} \mathcal{N} R^*_{\tau}.$$

• A short calculation shows

$$\begin{split} \|\gamma_{\psi_{\tau}} - \gamma_{\tau}^{\mathsf{HF}}\|_{\mathsf{tr}} &\leq C \mathsf{N}^{1/2} \langle e^{-i\mathcal{H}\tau/\hbar} \mathsf{R}_{0}\Omega, \mathcal{N}_{\tau}^{\mathsf{exc}} e^{-i\mathcal{H}\tau/\hbar} \mathsf{R}_{0}\Omega \rangle \\ &= C \mathsf{N}^{1/2} \langle \mathcal{U}(\tau)\Omega, \mathcal{N}\mathcal{U}(\tau)\Omega \rangle \end{split}$$

with $U(\tau) := R_{\tau}^* e^{-i\mathcal{H}\tau/\hbar} R_0$.

$\|\gamma_{\psi_{\tau}} - \gamma_{\tau}^{\mathsf{HF}}\|_{\mathsf{tr}} \leq \mathsf{Number of Excitations}$

• Number of excitations w.r.t. the HF-evolved state:

$$\mathcal{N}^{\mathsf{exc}}_{\tau} := R_{\tau} \mathcal{N} R^*_{\tau}.$$

A short calculation shows

$$\begin{split} \|\gamma_{\psi_{\tau}} - \gamma_{\tau}^{\mathsf{HF}}\|_{\mathsf{tr}} &\leq C N^{1/2} \langle e^{-i\mathcal{H}\tau/\hbar} R_0 \Omega, \mathcal{N}_{\tau}^{\mathsf{exc}} e^{-i\mathcal{H}\tau/\hbar} R_0 \Omega \rangle \\ &= C N^{1/2} \langle U(\tau) \Omega, \mathcal{N} U(\tau) \Omega \rangle \end{split}$$

with $U(\tau) := R_{\tau}^* e^{-i\mathcal{H}\tau/\hbar} R_0$.

• To control the trace norm difference, it is enough to show that

$$\langle \mathit{U}(au) \Omega, \mathcal{N} \mathit{U}(au) \Omega
angle = \mathcal{O}(1) \; .$$

By Grönwall's lemma, it is sufficient to prove

$$rac{\mathsf{d}}{\mathsf{d} au}\langle U(au)\Omega,\mathcal{N}U(au)\Omega
angle\leq C_t\langle U(au)\Omega,\mathcal{N}U(au)\Omega
angle.$$

Cancellations

- With the generator defined by $i\hbar\partial_{ au}U(au)=\mathcal{L}_{N}(au)U(au)$ we have to show

 $|i\hbar rac{\mathsf{d}}{\mathsf{d} au} \langle U(au)\Omega, \mathcal{N}U(au)\Omega
angle| = |\langle U(au)\Omega, [\mathcal{L}_N(au), \mathcal{N}]U(au)\Omega
angle| \leq \hbar C_{ au} \langle U(au)\Omega, \mathcal{N}U(au)\Omega
angle.$

U(τ) depends on R^{*}_τ which depends on the HF equation;
 using the HF equation the biggest terms of L_N(τ) cancel!

Cancellations

- With the generator defined by $i\hbar\partial_ au U(au)=\mathcal{L}_N(au)U(au)$ we have to show

 $|i\hbar \frac{\mathsf{d}}{\mathsf{d}\tau} \langle U(\tau)\Omega, \mathcal{N}U(\tau)\Omega \rangle| = |\langle U(\tau)\Omega, [\mathcal{L}_N(\tau), \mathcal{N}]U(\tau)\Omega \rangle| \leq \hbar C_\tau \langle U(\tau)\Omega, \mathcal{N}U(\tau)\Omega \rangle.$

- U(τ) depends on R^{*}_τ which depends on the HF equation;
 using the HF equation the biggest terms of L_N(τ) cancel!
- Remaining:

$$egin{aligned} &\hbarrac{\mathsf{d}}{\mathsf{d} au}\langle U(au)\Omega,\mathcal{N}U(au)\Omega
angle\ &\simeqrac{1}{N}\int\mathsf{d}\mathsf{x}\mathsf{d}\mathsf{y}\:V(x\!-\!\mathsf{y})\langle U(au)\Omega,\mathsf{a}^*(u_{ au, extsf{y}})\mathsf{a}(u_{ au, extsf{y}})\mathsf{a}(u_{ au, extsf{x}})\mathsf{a}(u_{ au, extsf{x}})U(au)\Omega
angle\;. \end{aligned}$$

Easy bound O(N), but need O(ħN).

• Have to extract a factor \hbar :

$$\frac{1}{N} \int dx dy \ V(x-y) \langle U(\tau)\Omega, a^*(u_{\tau,y}) a(u_{\tau,y}) a(v_{\tau,x}) a(u_{\tau,x}) U(\tau)\Omega \rangle$$

Recall: $v = v^2$, $u = 1 - v$:
$$\int dx \ v_{\tau,x} u_{\tau,x} = 0.$$

• But there is V(x-y).

Have to extract a factor ħ:

$$\frac{1}{N} \int dx dy \ V(x-y) \langle U(\tau)\Omega, a^*(u_{\tau,y}) a(u_{\tau,y}) a(v_{\tau,x}) a(u_{\tau,x}) U(\tau)\Omega \rangle$$

Recall: $v = v^2$, $u = \mathbb{1} - v$:
$$\int dx \ v_{\tau,x} u_{\tau,x} = 0.$$

• But there is V(x-y). \rightsquigarrow Commute u_{τ} and V.

Have to extract a factor ħ:

$$\frac{1}{N} \int dx dy \ V(x-y) \langle U(\tau)\Omega, a^*(u_{\tau,y})a(u_{\tau,y})a(v_{\tau,x})a(u_{\tau,x})U(\tau)\Omega \rangle.$$

Recall: $v = v^2$, $u = \mathbb{1} - v$:
$$\int dx \ v_{\tau,x}u_{\tau,x} = 0.$$

- But there is V(x-y). \sim Commute u_{τ} and V.
- The variables x and y can be treated separately using the Fourier decomposition $V(x-y) = \sum_{p \in \mathbb{Z}^3} \hat{V}(p) e^{ip \cdot x} e^{-ip \cdot y}:$ $\int dx \, v_{\tau,x} e^{ip \cdot x} u_{\tau,x} = \int dx \, v_{\tau,x} [e^{ip \cdot x}, u_{\tau}](\cdot, x) = \int dx \, v_{\tau,x} [e^{ip \cdot x}, \gamma_{\tau}^{\mathsf{HF}}](\cdot, x).$ $\simeq CN\hbar$

Have to extract a factor ħ:

$$\frac{1}{N} \int dx dy \ V(x-y) \langle U(\tau)\Omega, a^*(u_{\tau,y})a(u_{\tau,y})a(v_{\tau,x})a(u_{\tau,x})U(\tau)\Omega \rangle.$$

Recall: $v = v^2$, $u = 1 - v$:
$$\int dx \ v_{\tau,x}u_{\tau,x} = 0.$$

- But there is V(x-y). \sim Commute u_{τ} and V.
- The variables x and y can be treated separately using the Fourier decomposition $V(x-y) = \sum_{p \in \mathbb{Z}^3} \hat{V}(p) e^{ip \cdot x} e^{-ip \cdot y}:$ $\int dx \, v_{\tau,x} e^{ip \cdot x} u_{\tau,x} = \int dx \, v_{\tau,x} [e^{ip \cdot x}, u_{\tau}](\cdot, x) = \int dx \, v_{\tau,x} [e^{ip \cdot x}, \gamma_{\tau}^{\mathsf{HF}}](\cdot, x).$ $\simeq CN\hbar$

Random Phase Approximation

Back to the Particle–Hole Transformation

Our approach to RPA: start from the Fermi ball of the Hamiltonian on the torus. The Fermi ball is stationary under HF evolution. Consider its excitations.

In momentum representation the particle-hole transformation acts as

$${\sf R} \, a_k^* \, {\sf R}^* := \left\{ egin{array}{cc} a_k^* & |k| > (rac{3}{4\pi})^{1/3} {\sf N}^{1/3} \ a_k & |k| \leq (rac{3}{4\pi})^{1/3} {\sf N}^{1/3} \end{array}
ight.$$

Expand R^*H_NR and normal-order

$$R^*H_NR = E_N^{pw} + \hbar^2 \sum_{p \in \mathcal{B}_F^c} p^2 a_p^* a_p - \hbar^2 \sum_{h \in \mathcal{B}_F} h^2 a_h^* a_h + X + Q$$

=: H^{kin} exchange term, quartic in operators a^* and a

Goal: a quadratic approximation to the excitation Hamiltonian $H^{kin} + Q$. (Quadratic Hamiltonians can be diagonalized by Bogoliubov transformations.)

Bosonization of the Interaction

Observe: if we introduce collective pair operators

 $b_k^* := \sum_{\substack{p \in \mathcal{B}_F^c \\ h \in \mathcal{B}_F}} \delta_{p-h,k} a_p^* a_h^* \qquad \qquad p \quad \text{``particle'' outside the Fermi ball} \\ h \quad \text{``hole'' inside the Fermi ball}$

then

$$Q=rac{1}{N}\sum_{k\in\mathbb{Z}^3}\hat{V}(k)\Big(2b_k^*b_k+b_k^*b_{-k}^*+b_{-k}b_k\Big)+\mathcal{O}\Big(rac{\mathcal{N}^2}{N}\Big)\,.$$

This is convenient because the b_k^* and b_k have approximately bosonic commutators:

$$[b_k^*, b_l^*] = 0$$
 , $[b_l, b_k^*] = \delta_{k,l} n_k^2 + \mathcal{E}(k, l)$.

Bosonization of the Interaction

Observe: if we introduce collective pair operators

- $b_k^* := \sum_{\substack{p \in \mathcal{B}_F^c \\ h \in \mathcal{B}_F}} \delta_{p-h,k} a_p^* a_h^* \qquad \qquad p \quad pa \\ h \quad \text{``hom}$
- *p* "particle" outside the Fermi ball*h* "hole" inside the Fermi ball

then

$$Q=rac{1}{N}\sum_{k\in\mathbb{Z}^3}\hat{V}(k)\Big(2b_k^*b_k+b_k^*b_{-k}^*+b_{-k}b_k\Big)+\mathcal{O}\Big(rac{\mathcal{N}^2}{N}\Big)\,.$$

This is convenient because the b_k^* and b_k have approximately bosonic commutators:

$$[b_k^*, b_l^*] = 0$$
 , $[b_l, b_k^*] = \delta_{k,l} n_k^2 + \mathcal{E}(k, l)$.

But how to express H^{kin} through pair operators?

Bosonization of the Kinetic Energy

[Benfatto–Gallavotti '90] [Haldane '94] [Fröhlich–Götschmann–Marchetti '95]

[Kopietz et al. '95]

Localize to M = M(N) patches near the Fermi surface,

$$b_{\alpha,k}^{*} := \frac{1}{n_{\alpha,k}} \sum_{\substack{p \in \mathcal{B}_{F}^{c} \cap B_{\alpha} \\ h \in \mathcal{B}_{F} \cap B_{\alpha}}} \delta_{p-h,k} a_{p}^{*} a_{h}^{*}$$

with $n_{\alpha,k}$ chosen to normalize $||b_{\alpha,k}^*\Omega|| = 1$.

Bosonization of the Kinetic Energy

Localize to M = M(N) patches near the Fermi surface,

$$b_{\alpha,k}^* := \frac{1}{n_{\alpha,k}} \sum_{\substack{p \in \mathcal{B}_F^c \cap B_\alpha \\ h \in \mathcal{B}_F \cap B_\alpha}} \delta_{p-h,k} a_p^* a_h^*$$

with $n_{\alpha,k}$ chosen to normalize $\|b_{\alpha,k}^* \Omega\| = 1$.

Linearize kinetic energy around patch center ω_{α} :

 $[H^{\mathrm{kin}}, b^*_{\alpha,k}] \simeq 2\hbar |\mathbf{k} \cdot \hat{\omega}_{\alpha}| b^*_{\alpha,k}$

We approximate

[Benfatto–Gallavotti '90] [Haldane '94] [Fröhlich–Götschmann–Marchetti '95]

[Kopietz et al. '95]

 $\mathcal{H}^{\mathsf{kin}}\simeq\sum_{k\in\mathbb{Z}^3}\sum_{lpha=1}^M2\hbar u_lpha(k)^2b^*_{lpha,k}b_{lpha,k}\,,\quad u_lpha(k)^2:=|k\cdot\hat{\omega}_lpha|\,.$

Decomposing the Interaction over Patches

Recall

$$Q = rac{1}{N} \sum_{k \in \mathbb{Z}^3} \hat{V}(k) \left(2b_k^* b_k + b_k^* b_{-k}^* + b_{-k} b_k
ight)$$

Decompose

$$b_k^* = \sum_{lpha=1}^M n_{lpha,k} b_{lpha,k}^* + ext{lower order} \;.$$

Decomposing the Interaction over Patches

Recall

$$Q = rac{1}{N} \sum_{k \in \mathbb{Z}^3} \hat{V}(k) \left(2b_k^* b_k + b_k^* b_{-k}^* + b_{-k} b_k
ight)$$

Decompose

$$b_k^* = \sum\limits_{lpha=1}^M n_{lpha,k} b_{lpha,k}^* + ext{lower order} \; .$$
ntion:

Normalization:

 $n_{\alpha,k}^2 = \#$ p-h pairs in patch B_{α} with momentum k $A = M^{2/3}$ $A = M^{2/3}$

$$\simeq rac{4\pi N^{-\gamma}}{M} |k\cdot \hat{\omega}_{lpha}| = rac{4\pi N^{-\gamma}}{M} u_{lpha}(k)^2 \; .$$

Decomposing the Interaction over Patches

Recall

$$Q = rac{1}{N} \sum_{k \in \mathbb{Z}^3} \hat{V}(k) \left(2b_k^* b_k + b_k^* b_{-k}^* + b_{-k} b_k
ight)$$

Decompose

$$b_k^* = \sum_{lpha=1}^M n_{lpha,k} b_{lpha,k}^* + ext{lower order} \; .$$
tion:

Normalization:

$$egin{aligned} n_{lpha,k}^2 &= \# extsf{p-h} extsf{ pairs in patch } B_lpha extsf{ with momentum } k \ &\simeq rac{4\pi N^{2/3}}{M} |m{k}\cdot\hat{\omega}_lpha| = rac{4\pi N^{2/3}}{M} u_lpha(k)^2 \ . \end{aligned}$$

Effective Quadratic Bosonic Hamiltonian

$$H^{\text{eff}} = \hbar \sum_{k \in \mathbb{Z}^3} \left[\sum_{\alpha} u_{\alpha}(k)^2 b_{\alpha,k}^* b_{\alpha,k} + \frac{\hat{V}(k)}{M} \sum_{\alpha,\beta} \left(u_{\alpha}(k) u_{\beta}(k) b_{\alpha,k}^* b_{\beta,k} + u_{\alpha}(k) u_{\beta}(k) b_{\alpha,k}^* b_{\beta,-k}^* + \text{h.c.} \right) \right]$$

21

Bogoliubov Diagonalization

Quadratic Hamiltonians can be diagonalized by a Bogoliubov transformation

$$\mathcal{T} = \exp\left(\sum_{k\in\mathbb{Z}^3}\sum_{lpha,eta=1}^M \mathcal{K}(k)_{lpha,eta}b^*_{lpha,k}b^*_{eta,-k} - ext{h.c.}
ight)$$

Expanding into commutators we find

$$T^*b_{lpha,k}T\simeq\sum_{eta=1}^M\cosh(K(k))_{lpha,eta}b_{eta,k}+\sum_{eta=1}^M\sinh(K(k))_{lpha,eta}b_{eta,-k}^*$$

and choose the $M \times M$ -matrix K(k) to make b^*b^* - and bb-terms vanish from H^{eff} :

$$T^* \mathcal{H}^{ ext{eff}} T \simeq \mathcal{E}_{\mathcal{N}}^{ ext{RPA}} + \hbar \sum_{k \in \mathbb{Z}^3} \sum_{lpha, eta=1}^M \mathcal{E}(k)_{lpha, eta} b_{lpha, k}^* b_{eta, k} \; .$$

In particular, the ground state of H^{eff} is $\xi_{\text{gs}} \simeq T\Omega$, and therefore the ground state of H_N is approximately $RT\Omega$. We add bosonic excitations and follow their evolution!

Effective Bosonic Evolution

Note that this is an (approximately) bosonic second quantization:

$$T^* H^{\text{eff}} T \simeq E_N^{\text{RPA}} + \hbar \sum_{k \in \mathbb{Z}^3} \sum_{\alpha,\beta=1}^M E(k)_{\alpha,\beta} b^*_{\alpha,k} b_{\beta,k}$$
$$\simeq E_N^{\text{RPA}} + d\Gamma_{\text{bosonic}} \left(\underbrace{\hbar \bigoplus_{k \in \mathbb{Z}^3} E(k)}_{=: H_{\text{R}}} \right).$$

Consider a one-boson wave function

$$\eta \in \mathfrak{h}_{\mathsf{B}} := \bigoplus_{k \in \mathbb{Z}^3} \mathbb{C}^{\mathsf{M}}$$

Then

$$\eta_t := e^{-iH_B\tau/\hbar}\eta_0$$

is the time-evolution in the (first quantized) one-boson space.

For $\eta \in \mathfrak{h}_{\mathsf{B}}$ let

$$b^*(\eta) := \sum_{k\in\mathbb{Z}^3}\sum_{lpha=1}^M b^*_{lpha,k}\eta(k)_lpha \; .$$

Theorem (B–Nam–Porta–Schlein–Seiringer '21)

Assume that $\hat{V}(p)$ is compactly supported and non–negative. Let

$$\xi_0 := rac{1}{Z_m} b^*(\eta_1) \cdots b^*(\eta_m) \Omega \;, \qquad \qquad \xi_t := rac{1}{Z_m} b^*(\eta_{1,\tau}) \cdots b^*(\eta_{m,\tau}) \Omega \;.$$

Then

$$\|e^{-iH_N\tau/\hbar}RT\xi_0-e^{-i(E_N^{\mathsf{pw}}+E_N^{\mathsf{RPA}})\tau/\hbar}RT\xi_\tau\|\leq C_{m,V}\hbar^{1/15}|\tau|.$$

If $H_B\eta_i = e_i\eta_i$ $(e_i \in \mathbb{R})$ then we have constructed an approximate eigenstate of the many-body Hamiltonian, evolving up to times $|\tau| \ll N^{1/45}$ just with a phase:

$$e^{-iH_N au/\hbar}RT\xi_0\simeq e^{-iig(E_N^{
m pw}+E_N^{
m RPA}+\sum_{j=1}^m e_jig) au/\hbar}RT\xi_0\;.$$

Thank you!