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My research is centered on effective theories arising in interacting many-body quantum sys-
tems. The fundamental problem is always the same: the number of degrees of freedom in many-
body systems is enormous - starting from tens of thousands of particles in Bose-Einstein con-
densates up to 1058 particles in stars. While the fundamental equations (at least for not too high
energies) are known and mathematically well-defined, they cannot be solved analytically and are
also beyond the scope of numerical methods. The challenge was summarized by Robert B. Laugh-
lin and David Pines [14] as

“[The Schrödinger equation] cannot be solved accurately when the number of par-
ticles exceeds about 10. No computer existing, or that will ever exist, can break this
barrier because it is a catastrophe of dimension. [..] The central task [..] is no longer to
write down the ultimate equations but rather to catalogue and understand emergent
behavior in its many guises”.

Effective theories are the key in this endeavor: they reduce many-body systems to simpler systems
described by a small number of emergent degrees of freedom.

In my research, I attack this challenge from the mathematically rigorous point of view: many
effective theories have been proposed and are widely used – but often it remains unclear in which
domain of validity these theories emerge, and a quantitative control of the approximation errors
is missing. I apply methods of functional analysis and quantum field theory to develop a better
understanding of effective theories in bosonic, fermionic and spin systems. My research spans
over dynamics, spectral theory, and statistical mechanics.

Dynamics of Many-Boson Systems. A gas of N bosonic particles can be described by the Hamil-
tonian

HN =
N∑

j=1

(−∆x j +Vext(x j )
)+ ∑

1≤i< j≤N
N 2V (N (xi −x j )) , (1)

acting as a densely defined, self-adjoint operator on the Hilbert space L2
symm

(
(R3)N

)
consisting

of functions that are invariant under permutation of the N particles. The potential Vext : R3 → R

models the confinement in a trap, and V : R3 → R is a repulsive interaction potential. The N -
dependence of the interaction models the dilute physical regime (called the Gross-Pitaevskii scal-
ing regime), where the length scale of the potential is much shorter than the average distance be-
tween particles. Typically N ≥ 50.000, so we think of the asymptotics as N →∞. The ground state
ψgs ∈ L2

symm

(
(R3)N

)
of this system shows the phenomenon of Bose-Einstein condensation [15],

meaning that its one-particle reduced density matrix γ(1)
ψgs

:= tr2,...N |ψgs〉〈ψgs| (where |ψgs〉〈ψgs|
denotes the projection onto span{ψgs}, and tr2,...N denotes a partial trace) converges in trace norm
to a rank-one projection operator,

‖γ(1)
ψgs

−|ϕGP〉〈ϕGP|‖S1 → 0 (N →∞) ,
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where ϕGP ∈ L2(R3) is the normalized minimizer of the Gross-Pitaevskii energy functional

EGP(ϕ) =
∫

dx
(|∇ϕ|2 +Vext|ϕ|2 +4πa0|ϕ|4

)
, a0 = scattering length of V . (2)

In typical experiments one observes the time evolution after switching off the confining trap (i. e.,
setting Vext = 0). This evolution is described by the Cauchy problem of the Schrödinger equation,

i∂tψt = HNψt , ψ0 =ψgs . (3)

This is a partial differential equation of 3N variables. To be able to make predictions about typical
observables, one would like to approximate (3) by an effective evolution equation with a small
number of variables. In [2] we introduced a new technique , based on approximating the initial
data by a squeezed coherent state (a state that can be described in Fock space by applying a Weyl
operator and a Bogoliubov transformation to the vacuum vector), and thus proved that for all
times t ∈R there is a C (t ) ∈R such that

‖γ(1)
ψt

−|ϕt 〉〈ϕt |‖S1 ≤ C (t )p
N

(N →∞) ,

where ϕt is the solution of the time-dependent Gross-Pitaevskii equation (or cubic non-linear
Schrödinger equation)

i∂tϕt =−∆ϕt +8πa0|ϕt |2ϕt , ϕ0 =ϕGP .

Dynamics of Many-Fermion Systems. For fermionic systems one is interested in describing
similar experimental situations: a system of many interacting fermions is prepared in its ground
state in an external trapping potential; then the trap is switched off and the time evolution ob-
served. The Hartree–Fock approximation consists in looking for the best approximation within
the set of Slater determinants; the corresponding effective evolution equation is called the time-
dependent Hartree–Fock equation.

A rigorous derivation of the time-dependent Hartree–Fock equation is more difficult than
for bosons because for fermions already the simplest physical situation, the mean-field scaling
regime, is inevitably linked to the semiclassical regime. This means that the relevant Schrödinger
equation is

iε∂tψt =
[ N∑

j=1
−ε2∆x j +

1

N

∑
1≤i< j≤N

V (xi −x j )

]
ψt (4)

with a semiclassical parameter ε := N−1/3 → 0. Here ψt ∈ L2
antisymm

(
(R3)N

)
, meaning that trans-

position of two particles changes the sign of the wave function ψt .
In [6], we proved that the time-dependent Hartree–Fock equation indeed approximates the

many-body Schrödinger evolution, again in the sense that the difference of one-particle reduced
density matrices converges to zero, with rate N−1. A key idea in our work is to propagate com-
mutator bounds which quantify the semiclassicality of the state along the solution of the time-
dependent Hartree–Fock equation.

We also extended this result to fermions with relativistic dispersion relation [5] and initial data
prepared at positive temperature as a mixed state[3]. The proof of the latter result uses purifica-
tion of quantum states combined with the Araki-Wyss representation.

Hartree–Fock–Bogoliubov Equations and the Dirac–Frenkel principle. Where in the systems
described above it is easy to see which effective evolution equation constitutes the optimal ap-
proximation, this is more difficult for example in fermionic systems with non-vanishing pairing
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Figure 1: Consider the Schrödinger equation i∂tψt = Hψt in a Hilbert space H , and a submani-
fold M ⊂ H . The Dirac–Frenkel principle constructs the optimal approximation t 7→ψt ∈ M to
the solution of the Schrödinger equation: at every “time step”, the derivative 1

i Hψt of the exact
evolution is orthogonally projected into the tangent space Tψt M . Figure from [7].

density. Physically, models with non-vanishing pairing density describe superconductors. A sys-
tematic way of deriving effective equations (although without providing strong error bounds) is
the Dirac–Frenkel principle illustrated in Figure 1. However, the Dirac–Frenkel principle was orig-
inally formulated in the Hilbert space of many-body wave functions even though the reduced
density matrix is more relevant for the approximation of typical observables. For this reason, in
[7] we formulated a Dirac–Frenkel principle in terms of the reduced density matrix, and proved
its equivalence to the formal quasifree reduction procedure. We thus established that the optimal
approximation for reduced density matrices in systems with pairing is given by the Hartree–Fock–
Bogoliubov equations (also called the Bogoliubov–de-Gennes equations or BCS equations). We
also extended the result to the analogous bosonic setting.

A complete proof of well-posedness for the Hartree–Fock–Bogoliubov equations in the phys-
ically most important case of Coulomb interactions was absent from the literature at that point.
In [7] we showed that the Banach fixed point theorem cannot be applied in kinetic energy space.
Instead we gave a fixed point argument in a larger Banach space. We then constructed a regu-
larization compatible with the conservation laws, and thus proved global well-posedness also in
kinetic energy space.

Spin-Wave Theory. The ferromagnetic quantum Heisenberg model is a model proposed to de-
scribe the origin of magnetism. In its simplest version, it describes spins placed on the simple
cubic lattice, interacting only with their nearest neighbours. Let Λ be a finite subset of Z3, for
simplicity a box. The Hilbert space of the model is given by

HΛ = ⊗
x∈Λ

C2S+1 , S ∈ 1

2
N ,

and each copy of C2S+1 carries a spin–S representation of SU (2). The corresponding angular mo-
mentum operator at site x ∈ Λ is denoted by Sx = (S1

x ,S2
x ,S3

x ) with the Si
x constituting a basis for

the representation of the Lie algebra su(2). The Hamiltonian is

HΛ = ∑
(x,y)∈Λ×Λ:
|x−y |=1

(
S2 −Sx ·Sy

)
.

The size of the boxΛ is to be sent to infinity to describe the thermodynamic limit.
In two groundbreaking papers [10, 11], Dyson argued that the Heisenberg model at low tem-

peratures can be understood in terms of spin waves, delocalized collective excitations of the
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ground state that behave as bosonic particles. This was made rigorous by [9], who used the
Holstein-Primakov transformation to prove that the free energy, asymptotically for temperature
T → 0, is to leading order given by non-interacting bosons. However, Dyson made a second re-
markable claim: the corrections due to interaction between spin waves should be extremely small,
namely of order T 4 (whereas the leading term is T 3/2). In [1] I confirmed this claim to first order
in S−1 and as an upper bound.

Optimal Upper Bound on the Correlation Energy of the Fermi Gas. Recently I have started to
study the spectral theory of the mean-field Fermi gas, as introduced in (4). According to [13] the
ground state energy (when constraining to a box)

EN := inf
ψ∈L2

antisymm((R3)N )
‖ψ‖=1

〈ψ, HNψ〉 , HN =
N∑

j=1
−ε2∆x j +

1

N

∑
1≤i< j≤N

V (xi −x j ) ,

is well approximated by the infimum of the Hartree-Fock energy functional

EHF(ω) = tr
(−ε2∆ω

)+ 1

2N

∫
V (x − y)ω(x, x)ω(y, y)dx dy − 1

2N

∫
V (x − y)|ω(x, y)|2 dx dy .

The minimization of EHF(ω) is over all rank-N orthogonal projection operators ω on L2(R3), cor-
responding to reduced density matrices of N -particle Slater determinants. The diagonals ω(x, x)
are defined using the spectral decomposition.

A long-standing open problem is to obtain the next order of the ground state energy beyond
Hartree-Fock theory, called the correlation energy. For the jellium model (a gas of charged parti-
cles with Coulomb repulsion in a uniform background of the opposite charge), a formula for the
two leading contributions to the correlation energy, called the Gell-Mann–Brueckner formula,
has been conjectured based on extrapolation from the highly divergent perturbation theory [12].
Bohm and Pines [8] and Sawada et al. [16] already suggested that the correlation energy is related
to emergent bosonic modes in the Fermi gas, most prominently the plasmon mode, which have
the effect of screening the long-range tail of the Coulomb potential.

In [4] we established a rigorous procedure to describe the dominant excitations of the mean-
field Fermi gas as emergent, approximately bosonic particles. We embed L2

antisymm

(
(R3)N

)
in

fermionic Fock space and use the formalism of creation and annihilation operators. We then
introduce collective creation operators for delocalized particle–hole pairs as

b∗
α,k := 1

nα,k

∑
p∈B c

F∩Bα

h∈BF∩Bα

δp−h,k a∗
p a∗

h , (5)

where a∗
h creates a hole with momentum −h ∈Z3 inside the Fermi ball BF and a∗

p a particle with
momentum p outside the Fermi ball; both h and p are also localized to a patch Bα of the Fermi
surface (more precisely, the union of all patches covers a neighborhood of the Fermi surface); nα,k

is a normalization constant. The commutator relations of these pair creation and corresponding
pair annihilation operators (defined as the adjoint of a pair creation operator) are given by

[bα,k ,bβ,l ] = 0, [bα,k ,b∗
β,l ] = δα,β

(
δk,l +Eα(k, l )

)
.

If the deviation operator Eα(k, l ) was zero, these pair operators would describe exactly bosonic
particles. This can be turned into a rigorous approximation: we bounded the deviation operator
in terms of the fermionic number operator N by

‖Eα(k, l )ψ‖ ≤ 2

nα,k nα,l
‖N ψ‖ for all ψ in Fock space,
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and for large enough patches we have n−1
α,k → 0 as N →∞. At the same time, we can adjust the

patches to be small enough such that the kinetic energy can be linearized around the patch cen-
ters, allowing us to approximate the original interacting fermionic Hamiltonian by a quadratic,
approximately bosonic Hamiltonian. We then established an approximate theory of Bogoliubov
transformations and quasifree states for collective pairs, and were thus able to construct an ap-
proximate ground state. This state, used as a trial state, has energy given by the mean-field ana-
logue of the Gell-Mann–Brueckner formula.
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