Metodi Matematici della Meccanica Quantistica

Assignment 1

To be handed in on Friday, October 11, 2024 before 10:30 via email (scan, readable foto, or $\[MTex]$) to ngoc.nguyen@unimi.it.

Problem 1: Banach Spaces and Bounded Operators (3+4+3 points)

- **a.** Let X be a Banach space and $\tilde{X} \subset X$ a closed subspace. Show that \tilde{X} is a Banach space.
- **b.** Let X be a normed vector space and Y be a Banach space. Show that the space of bounded linear operators from X to Y, i.e., $\mathcal{L}(X,Y)$ with the operator norm, is a Banach space.
- **c.** Let X, Y be Banach spaces and $A: D \to Y$ a bounded linear operator defined on a dense subspace $D \subset X$. Construct an extension \overline{A} of A to all of X such that the extension is a linear operator with the same operator norm as A, i.e., $\|\overline{A}\| = \|A\|$.

Problem 2: Derivative Operator (5+5 points)

Consider (as in the example presented in the lecture) the Banach space X = C([0, 1]) of continuous functions with the norm $||f|| := \sup_{x \in [0,1]} |f(x)|$.

Define operators $A_k: D_k \subset X \to X$ (for the two options $k \in \{3, 4\}$) by the mapping

$$(A_k f)(x) := f'(x)$$

with domains given as subsets of the continuously differentiable functions as follows

$$D_3 := \{ f \in C^1([0,1]) \mid f(0) = f(1) \}$$
 (periodic boundary conditions),
$$D_4 := \{ f \in C^1([0,1]) \mid f(0) = 0 = f(1) \}$$
 (Dirichlet boundary conditions).

Show that

a. $\sigma(A_3) = \sigma_p(A_3) = 2\pi i \mathbb{Z},$

b. $\sigma(A_4) = \mathbb{C}$ and $\sigma_p(A_4) = \emptyset$.

Problem 3: Liouville's theorem (10 points)

Prove the following theorem:

Let X be a Banach space. Let $L : \mathbb{C} \to \mathcal{L}(X)$ be an operator-valued entire function. If the operator norm of L is bounded, i.e., if there exists $M \in \mathbb{R}$ such that $||L(z)|| \leq M$ for all $z \in \mathbb{C}$, then L is constant.