Metodi Matematici della Meccanica Quantistica

Assignment 3

To be handed in on Wednesday, November 13, 2023, before 20:59 via email (scanned or $\angle M$ _FX) to [ngoc.nguyen@unimi.it.](mailto:ngoc.nguyen@unimi.it)

Problem 1: Weyl criterion (10 points)

Let X be a Banach space, $A: D \subset X \to X$ an operator and $\lambda \in \mathbb{C}$.

Prove that: If there exists a Weyl sequence, i. e., a sequence $(x_n)_{n\in\mathbb{N}}$ in D with $||x_n|| = 1$ for all $n \in \mathbb{N}$ and $||(A - \lambda)x_n|| \to 0$ as $n \to \infty$, then $\lambda \in \sigma(A)$.

Problem 2: Coulomb potential (5+5 points)

- **a.** Suppose that $V \in L^2 + L^{\infty}(\mathbb{R}^3)$. Show that the L^2 -part can be made arbitrarily small, i.e., for every $\varepsilon > 0$ there exist $V_2^{\varepsilon} \in L^2(\mathbb{R}^3)$ and $V_{\infty}^{\varepsilon} \in L^{\infty}(\mathbb{R}^3)$ such that $V = V_2^{\varepsilon} + V_{\infty}^{\varepsilon}$ and $||V_2^{\varepsilon}||_2 < \varepsilon$.
- **b.** Show that the Coulomb potential, defined by $V(x) := \frac{1}{|x|}$ for $x \neq 0$ and $V(0) := 0$, is in $L^2 + L^\infty(\mathbb{R}^3)$.

Problem 3: Sobolev inequalities (5+5 points)

a. Assume that for functions defined on \mathbb{R}^n a Sobolev inequality of the following form holds: There exists a constant $C_{n,p,q}$ such that for all f we have

$$
||f||_{L^q} \leq C_{n,p,q} ||\nabla f||_{L^p} .
$$

Given n and p, consider a rescaling $f_{\lambda}(x) = f(\lambda x)$ by a parameter $\lambda > 0$ to determine the only possible exponent q for which this can hold.

b. Let $u \in H^m(\mathbb{R}^n)$ with $m > n/2$ (the Sobolev space such that u has m weak derivatives in L^2). Use the Fourier transform to show that $u \in L^{\infty}(\mathbb{R}^n)$ and

$$
||u||_{L^{\infty}} \leq C_{m,n}||u||_{H^m}, \qquad (1)
$$

where the constant $C_{m,n}$ does not depend on u.

Problem 4: On the Existence Proof for SCUGs (6+6 points)

Let $A: D \subset \mathcal{H} \to \mathcal{H}$ be a self-adjoint operator in a Hilbert space \mathcal{H} .

In the lecture we defined $B_m := im(A + im)^{-1}$ $(m \in \mathbb{Z}), A_m := B_m AB_{-m}$, and

$$
U_m(t) := e^{-iA_m t} := \sum_{k \in \mathbb{N}} \frac{1}{k!} \left(-itA_m \right)^k \; .
$$

- a. Show that $U_m(t)$ is a SCUG for every $m \in \mathbb{N}$. Then show that the limit of $U_m(t)\varphi$ $(m \to \infty)$ exists for all $\varphi \in D$ and all $t \in \mathbb{R}$. Why does $U(t) := s$ -lim $_{m \to \infty} U_m(t)$ exist?
- **b.** Show that $U(t)$ is a SCUG. Then show that its generator is A.

Problem 5: Resolvent of the Laplacian (8 points)

Let $H_0 = -\Delta$ as an operator with domain $H^2(\mathbb{R}^3)$ in $L^2(\mathbb{R}^3)$. Show that for $\varphi \in L^2(\mathbb{R}^3)$ and $\kappa > 0$ we have

$$
\left(\left(H_0 + \kappa^2 \right)^{-1} \varphi \right) (x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{e^{-\kappa |x-y|}}{|x-y|} \varphi(y) \mathrm{d}y.
$$

Hint: Recall that the Fourier transform turns a multiplication operator into convolution with the inversely transformed function \dot{f} :

$$
\left(\mathcal{F}^{-1}T_f\mathcal{F}\varphi\right)(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} \check{f}(x-y)\varphi(y)dy.
$$

Then use spherical coordinates and the residue theorem of complex analysis (if necessary, look it up!) to calculate f .