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Problem 1: Wave Operators for Pseudo-Relativistic Particle (15 points)

Let ω(p) :=
√
p2 + 1 and consider the pseudo-relativistic Hamiltonian

H = H0 + V , H0 =
√
−∆+ 1 := F−1TωF

where the potential V ∈ L∞(Rn,R) satisfies, for some µ > 1, the decay |V (x)| ≤
const · |x|−µ for |x| > R. You can take for granted that H = H∗ on D(H0).

Show that the wave operators Ω± exist.

Hint: Let D = {φ ∈ S(Rn) | φ̂ ∈ C∞
0 (Rn \{0})}. Let φ ∈ D with supp(φ̂) ⊂ {|p| ≥ ε}.

Then for all p ∈ supp(φ̂) we have by monotonicity

|∇ω(p)| = |p|√
p2 + 1

≥ ε√
ε2 + 1

=: 2δ .

Decompose the potential into parts |x| ≤ δt and |x| > δt.

Problem 2: Abelian Limits (5 + 5 + 5 points)

a. Let H0 = −∆/2 in L2(R3) and E ∈ R. Show that

s-lim
ε↓0

ε(H0 − E + iε)−1 = 0.

Hint: Use the Fourier transform and choose a convenient dense subspace.

b. Let φ : [0,∞) → X be continuous, X a Banach space and assume that φ∞ :=
limt→∞ φ(t) exists. Prove that

φ∞ = lim
ε↓0

ε

∫ ∞

0

e−εtφ(t)dt .

c. Let H be a self-adjoint operator in L2(R3) with D(H) = D(H0), H0 = −∆/2, and
assume that the wave operator Ω+ = s-limt→∞ eiHte−iH0t exists. Assume furthermore
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that asymptotic completeness holds, i. e., ranΩ+ = H⊥
B, where HB is the closure of

the span of the eigenstates of H.

Prove that for all φ ∈ H we have

Ω∗
+φ = lim

ε↓0
ε

∫ ∞

0

e−εteiH0te−iHtφ dt .

Problem 3: Concatenation and Functional Calculus (15 points)

Let A be a self-adjoint operator on a Hilbert space. Let f, g : R → R be two measurable
functions. Is it true that f(g(A)) = (f ◦ g)(A)? Provide a proof or a counterexample.

Problem 4: An Integral Resolvent Representation (5+5+5+5 points)

Let A = A∗ be an operator on a Hilbert space H, satisfying A ≥ 0 (recall that this
means ⟨φ,Aφ⟩ ≥ 0 for all φ ∈ H).

a. Show that σ(A) ⊂ [0,∞).

b. Let x ∈ R with x ≥ 0. Show that there exists a c ∈ [0,∞) such that

√
x = c

∫ ∞

0

(
1− λ2

(
x+ λ2

)−1
)
dλ .

Hint: One can compute this explicitly or look for a shortcut.

c. Show that √
A = c

∫ ∞

0

(
1− λ2

(
A+ λ2

)−1
)
dλ .

d. Let us now simplify to the finite-dimensional case H = Cn. Let D > 0 be a diagonal
matrix (with respect to the canonical basis), let v = (1, 1, 1, . . . , 1)T ∈ Cn (also in
the canonical basis) and let Pv be the rank-one orthogonal projection on v. Compute√
A as explicitly as possible.

Hint: Sherman-Morrison formula.
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